Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature : BioMed Central |
|---|---|
| Author | Moradinezhad, Mehrnaz Abbasi Montazeri, Effat Hashemi Ashtiani, Alireza Pourlotfi, Reza Rakhshan, Vahid |
| Abstract | Introduction Orthodontic clear aligners and retainers have numerous advantages that is making them ever increasingly popular. However, they might, similar to any other oral appliance, contribute to biofilm formation and finally dental caries or white spot lesions or gingival inflammations. The literature on biofilm formation on orthodontic clear appliances is very scarce and limited to a few microorganisms and materials. Therefore, this experimental study evaluated the biofilm formation on 5 thermoformed and 3D printed CAD/CAM orthodontic retainers in 3 intervals. Methods In this in vitro study, 345 specimens (270 test discs and 45 negative controls) were created from fabricated retainers. Retainers included a 3D printed CAD/CAM material (Detax) and four thermoformed retainers [Erkodent (polyethylene terephthalate glycol [PETG]); EasyVac (polyethylene); DB (polyester based on terephthalic acid); and Clear Tech]. They were all 1 mm thick, and all completely fabricated, i.e., heated or printed. The discs were placed in 96-well plates. Microorganisms were cultured on 270 discs for 24 h (90 discs), 72 h (90 other discs), and 5 days or 120 h (90 other discs). Biofilm formation of the strains and negative controls was measured using the microtiter plate assay by ELISA reading. The microbes’ ability to produce biofilm was categorized based on the comparison of average optical density (OD) of tests versus a cut-off point OD (ODc) calculated as the average of the OD of corresponding negative controls plus 3× its standard deviation: non-biofilm former [OD ≤ ODc], weak biofilm former [ODc < OD ≤ (2 × ODc)], moderate biofilm former [(2 × ODc) < OD ≤ (4 × ODc)], and strong biofilm former [(4 × ODc) < OD]. These were also converted to ranked scores between zero (no biofilm) and 3. The difference between ODs with control ODs were calculated. These were analyzed using 3-way ANOVA, 2-way ANOVA, and Tukey tests (α = 0.05, α = 0.008). Results The 3-way ANOVA showed that the overall difference among the ΔODs of 5 retainers (all microorganisms and all intervals combined, n = 270) was not significant (F = 1.860, P = 0.119). Nevertheless, the difference among 3 intervals (F = 31.607, P = 0.0000) and the difference among the 6 microorganisms (F = 24.044, P = 0.0000) were significant. According to the Tukey test, the differences between the 1st interval with either of the other two intervals was significant (both P values = 0.000). There were significant differences between Candida albicans with all other organisms (all 5 P values = 0.0000). All other pairwise comparisons were insignificant (all 10 P values ≥ 0.1). After taking the averages of the 3 intervals, the order of the biofilm generation for different materials were as follows: Detax (average score: 1.56), Easyvac (1.67), Erkodent (1.78), Clear Tech (1.83), BD (2.28). Conclusions As far as these 6 microorganisms are of concern, there might not be a significant overall difference among the clear retainer materials tested in this study. A significant overall increase was observed between the first and third days, which later did not significantly increase more until day 5. The Candida albicans biofilm was more intense than the tested 5 bacteria, which themselves showed rather similar growth patterns to each other. |
| Related Links | https://bmcoralhealth.biomedcentral.com/counter/pdf/10.1186/s12903-024-04893-4.pdf |
| Ending Page | 13 |
| Page Count | 13 |
| Starting Page | 1 |
| File Format | HTM / HTML |
| ISSN | 14726831 |
| DOI | 10.1186/s12903-024-04893-4 |
| Journal | BMC Oral Health |
| Issue Number | 1 |
| Volume Number | 24 |
| Language | English |
| Publisher | BioMed Central |
| Publisher Date | 2024-09-18 |
| Access Restriction | Open |
| Subject Keyword | Dentistry Oral and Maxillofacial Surgery Clear aligners Clear retainers Orthodontic appliances Biofilm Caries formation 3D Printing CAD/CAM Thermoform Streptococcus sanguinis Staphylococcus epidermidis Staphylococcus Aureus Lactobacillus casei Candida Albicans |
| Content Type | Text |
| Resource Type | Article |
| Subject | Dentistry |
| Journal Impact Factor | 2.6/2023 |
| 5-Year Journal Impact Factor | 3.2/2023 |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|