Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature : BioMed Central |
|---|---|
| Author | Liu, Xingbiao Ji, Zhilin Zhang, Libo Li, Linlin Xu, Wengui Su, Qian |
| Abstract | Background Predicting the response to neoadjuvant chemoimmunotherapy in patients with resectable non-small cell lung cancer (NSCLC) facilitates clinical treatment decisions. Our study aimed to establish a machine learning model that accurately predicts the pathological complete response (pCR) using 18F-FDG PET radiomics features. Methods We retrospectively included 210 patients with NSCLC who completed neoadjuvant chemoimmunotherapy and subsequently underwent surgery with pathological results, categorising them into a training set of 147 patients and a test set of 63 patients. Radiomic features were extracted from the primary tumour and lymph nodes. Using 10-fold cross-validation with the least absolute shrinkage and selection operator method, we identified the most impactful radiomic features. The clinical features were screened using univariate and multivariate analyses. Machine learning models were developed using the random forest method, leading to the establishment of one clinical feature model, one primary tumour radiomics model, and two fusion radiomics models. The performance of these models was evaluated based on the area under the curve (AUC). Results In the training set, the three radiomic models showed comparable AUC values, ranging from 0.901 to 0.925. The clinical model underperformed, with an AUC of 0.677. In the test set, the Fusion_LN1LN2 model achieved the highest AUC (0.823), closely followed by the Fusion_Lnall model with an AUC of 0.729. The primary tumour model achieved a moderate AUC of 0.666, whereas the clinical model had the lowest AUC at 0.631. Additionally, the Fusion_LN1LN2 model demonstrated positive net reclassification improvement and integrated discrimination improvement values compared with the other models, and we employed the SHapley Additive exPlanations methodology to interpret the results of our optimal model. Conclusions Our fusion radiomics model, based on 18F-FDG-PET, will assist clinicians in predicting pCR before neoadjuvant chemoimmunotherapy for patients with resectable NSCLC. |
| Related Links | https://bmccancer.biomedcentral.com/counter/pdf/10.1186/s12885-025-13905-7.pdf |
| Ending Page | 15 |
| Page Count | 15 |
| Starting Page | 1 |
| File Format | HTM / HTML |
| ISSN | 14712407 |
| DOI | 10.1186/s12885-025-13905-7 |
| Journal | BMC Cancer |
| Issue Number | 1 |
| Volume Number | 25 |
| Language | English |
| Publisher | BioMed Central |
| Publisher Date | 2025-03-21 |
| Access Restriction | Open |
| Subject Keyword | Cancer Research Oncology Surgical Oncology Health Promotion and Disease Prevention Biomedicine Medicine Public Health Non-small cell lung cancer Radiomics Neoadjuvant chemoimmunotherapy Pathological response PET Medicine/Public Health |
| Content Type | Text |
| Resource Type | Article |
| Subject | Cancer Research Oncology Genetics |
| Journal Impact Factor | 3.4/2023 |
| 5-Year Journal Impact Factor | 3.8/2023 |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|