Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature : BioMed Central |
|---|---|
| Author | Zhang, Yaqi Sylvester, Karl G. Wong, Ronald J. Blumenfeld, Yair J. Hwa, Kuo Yuan Chou, C. James Thyparambil, Sheeno Liao, Weili Han, Zhi Schilling, James Jin, Bo Marić, Ivana Aghaeepour, Nima Angst, Martin S. Gaudilliere, Brice Winn, Virginia D. Shaw, Gary M. Tian, Lu Luo, Ruben Y. Darmstadt, Gary L. Cohen, Harvey J. Stevenson, David K. McElhinney, Doff B. Ling, Xuefeng B. |
| Abstract | Background Preterm birth (PTB) is a serious health problem. PTB complications is the main cause of death in infants under five years of age worldwide. The ability to accurately predict risk for PTB during early pregnancy would allow early monitoring and interventions to provide personalized care, and hence improve outcomes for the mother and infant. Objective This study aims to predict the risks of early preterm (< 35 weeks of gestation) or very early preterm (≤ 26 weeks of gestation) deliveries by using high-resolution maternal urinary metabolomic profiling in early pregnancy. Design A retrospective cohort study was conducted by two independent preterm and term cohorts using high-density weekly urine sampling. Maternal urine was collected serially at gestational weeks 8 to 24. Global metabolomics approaches were used to profile urine samples with high-resolution mass spectrometry. The significant features associated with preterm outcomes were selected by Gini Importance. Metabolite biomarker identification was performed by liquid chromatography tandem mass spectrometry (LCMS-MS). XGBoost models were developed to predict early or very early preterm delivery risk. Setting and participants The urine samples included 329 samples from 30 subjects at Stanford University, CA for model development, and 156 samples from 24 subjects at the University of Alabama, Birmingham, AL for validation. Results 12 metabolites associated with PTB were selected and identified for modelling among 7,913 metabolic features in serial-collected urine samples of pregnant women. The model to predict early PTB was developed using a set of 12 metabolites that resulted in the area under the receiver operating characteristic (AUROCs) of 0.995 (95% CI: [0.992, 0.995]) and 0.964 (95% CI: [0.937, 0.964]), and sensitivities of 100% and 97.4% during development and validation testing, respectively. Using the same metabolites, the very early PTB prediction model achieved AUROCs of 0.950 (95% CI: [0.878, 0.950]) and 0.830 (95% CI: [0.687, 0.826]), and sensitivities of 95.0% and 60.0% during development and validation, respectively. Conclusion Models for predicting risk of early or very early preterm deliveries were developed and tested using metabolic profiling during the 1st and 2nd trimesters of pregnancy. With patient validation studies, risk prediction models may be used to identify at-risk pregnancies prompting alterations in clinical care, and to gain biological insights of preterm birth. |
| Related Links | https://bmcpregnancychildbirth.biomedcentral.com/counter/pdf/10.1186/s12884-024-06974-2.pdf |
| Ending Page | 11 |
| Page Count | 11 |
| Starting Page | 1 |
| File Format | HTM / HTML |
| ISSN | 14712393 |
| DOI | 10.1186/s12884-024-06974-2 |
| Journal | BMC Pregnancy and Childbirth |
| Issue Number | 1 |
| Volume Number | 24 |
| Language | English |
| Publisher | BioMed Central |
| Publisher Date | 2024-11-25 |
| Access Restriction | Open |
| Subject Keyword | Reproductive Medicine Maternal and Child Health Gynecology Early pregnancy Preterm risk prediction Spontaneous preterm birth Biomarker Urinary metabolite LC-MS/MS |
| Content Type | Text |
| Resource Type | Article |
| Subject | Obstetrics and Gynecology |
| Journal Impact Factor | 2.8/2023 |
| 5-Year Journal Impact Factor | 3.4/2023 |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|