Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature : BioMed Central |
|---|---|
| Author | Ranjbar, Amene Montazeri, Farideh Farashah, Mohammadsadegh Vahidi Mehrnoush, Vahid Darsareh, Fatemeh Roozbeh, Nasibeh |
| Abstract | Background Low birth weight (LBW) has been linked to infant mortality. Predicting LBW is a valuable preventative tool and predictor of newborn health risks. The current study employed a machine learning model to predict LBW. Methods This study implemented predictive LBW models based on the data obtained from the “Iranian Maternal and Neonatal Network (IMaN Net)” from January 2020 to January 2022. Women with singleton pregnancies above the gestational age of 24 weeks were included. Exclusion criteria included multiple pregnancies and fetal anomalies. A predictive model was built using eight statistical learning models (logistic regression, decision tree classification, random forest classification, deep learning feedforward, extreme gradient boost model, light gradient boost model, support vector machine, and permutation feature classification with k-nearest neighbors). Expert opinion and prior observational cohorts were used to select candidate LBW predictors for all models. The area under the receiver operating characteristic curve (AUROC), accuracy, precision, recall, and F1 score were measured to evaluate their diagnostic performance. Results We found 1280 women with a recorded LBW out of 8853 deliveries, for a frequency of 14.5%. Deep learning (AUROC: 0.86), random forest classification (AUROC: 0.79), and extreme gradient boost classification (AUROC: 0.79) all have higher AUROC and perform better than others. When the other performance parameters of the models mentioned above with higher AUROC were compared, the extreme gradient boost model was the best model to predict LBW with an accuracy of 0.79, precision of 0.87, recall of 0.69, and F1 score of 0.77. According to the feature importance rank, gestational age and prior history of LBW were the top critical predictors. Conclusions Although this study found that the extreme gradient boost model performed well in predicting LBW, more research is needed to make a better conclusion on the performance of ML models in predicting LBW. |
| Related Links | https://bmcpregnancychildbirth.biomedcentral.com/counter/pdf/10.1186/s12884-023-06128-w.pdf |
| Ending Page | 7 |
| Page Count | 7 |
| Starting Page | 1 |
| File Format | HTM / HTML |
| ISSN | 14712393 |
| DOI | 10.1186/s12884-023-06128-w |
| Journal | BMC Pregnancy and Childbirth |
| Issue Number | 1 |
| Volume Number | 23 |
| Language | English |
| Publisher | BioMed Central |
| Publisher Date | 2023-11-20 |
| Access Restriction | Open |
| Subject Keyword | Reproductive Medicine Maternal and Child Health Gynecology Low birth weight Fetal weight Birth weight Machine learning X gradient boost model |
| Content Type | Text |
| Resource Type | Article |
| Subject | Obstetrics and Gynecology |
| Journal Impact Factor | 2.8/2023 |
| 5-Year Journal Impact Factor | 3.4/2023 |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|