Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature : BioMed Central |
|---|---|
| Author | Yin, Shuwei Tian, Xiao Zhang, Jingjing Sun, Peisen Li, Guanglin |
| Abstract | Background Circular RNA (circRNA) is a novel type of RNA with a closed-loop structure. Increasing numbers of circRNAs are being identified in plants and animals, and recent studies have shown that circRNAs play an important role in gene regulation. Therefore, identifying circRNAs from increasing amounts of RNA-seq data is very important. However, traditional circRNA recognition methods have limitations. In recent years, emerging machine learning techniques have provided a good approach for the identification of circRNAs in animals. However, using these features to identify plant circRNAs is infeasible because the characteristics of plant circRNA sequences are different from those of animal circRNAs. For example, plants are extremely rich in splicing signals and transposable elements, and their sequence conservation in rice, for example is far less than that in mammals. To solve these problems and better identify circRNAs in plants, it is urgent to develop circRNA recognition software using machine learning based on the characteristics of plant circRNAs. Results In this study, we built a software program named PCirc using a machine learning method to predict plant circRNAs from RNA-seq data. First, we extracted different features, including open reading frames, numbers of k-mers, and splicing junction sequence coding, from rice circRNA and lncRNA data. Second, we trained a machine learning model by the random forest algorithm with tenfold cross-validation in the training set. Third, we evaluated our classification according to accuracy, precision, and F1 score, and all scores on the model test data were above 0.99. Fourth, we tested our model by other plant tests, and obtained good results, with accuracy scores above 0.8. Finally, we packaged the machine learning model built and the programming script used into a locally run circular RNA prediction software, Pcirc ( https://github.com/Lilab-SNNU/Pcirc ). Conclusion Based on rice circRNA and lncRNA data, a machine learning model for plant circRNA recognition was constructed in this study using random forest algorithm, and the model can also be applied to plant circRNA recognition such as Arabidopsis thaliana and maize. At the same time, after the completion of model construction, the machine learning model constructed and the programming scripts used in this study are packaged into a localized circRNA prediction software Pcirc, which is convenient for plant circRNA researchers to use. |
| Related Links | https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/s12859-020-03944-1.pdf |
| Ending Page | 14 |
| Page Count | 14 |
| Starting Page | 1 |
| File Format | HTM / HTML |
| ISSN | 14712105 |
| DOI | 10.1186/s12859-020-03944-1 |
| Journal | BMC Bioinformatics |
| Issue Number | 1 |
| Volume Number | 22 |
| Language | English |
| Publisher | BioMed Central |
| Publisher Date | 2021-01-06 |
| Access Restriction | Open |
| Subject Keyword | Bioinformatics Microarrays Computational Biology Computer Appl. in Life Sciences Algorithms CircRNA Machine learning Plant Random forest Computational Biology/Bioinformatics |
| Content Type | Text |
| Resource Type | Article |
| Subject | Molecular Biology Biochemistry Computer Science Applications Applied Mathematics Structural Biology |
| Journal Impact Factor | 2.9/2023 |
| 5-Year Journal Impact Factor | 3.6/2023 |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|