Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature : BioMed Central |
|---|---|
| Author | Jiang, Min Huang, Yang Fan, Jung-wei Tang, Buzhou Denny, Josh Xu, Hua |
| Abstract | Background Parsing, which generates a syntactic structure of a sentence (a parse tree), is a critical component of natural language processing (NLP) research in any domain including medicine. Although parsers developed in the general English domain, such as the Stanford parser, have been applied to clinical text, there are no formal evaluations and comparisons of their performance in the medical domain. Methods In this study, we investigated the performance of three state-of-the-art parsers: the Stanford parser, the Bikel parser, and the Charniak parser, using following two datasets: (1) A Treebank containing 1,100 sentences that were randomly selected from progress notes used in the 2010 i2b2 NLP challenge and manually annotated according to a Penn Treebank based guideline; and (2) the MiPACQ Treebank, which is developed based on pathology notes and clinical notes, containing 13,091 sentences. We conducted three experiments on both datasets. First, we measured the performance of the three state-of-the-art parsers on the clinical Treebanks with their default settings. Then we re-trained the parsers using the clinical Treebanks and evaluated their performance using the 10-fold cross validation method. Finally we re-trained the parsers by combining the clinical Treebanks with the Penn Treebank. Results Our results showed that the original parsers achieved lower performance in clinical text (Bracketing F-measure in the range of 66.6%-70.3%) compared to general English text. After retraining on the clinical Treebank, all parsers achieved better performance, with the best performance from the Stanford parser that reached the highest Bracketing F-measure of 73.68% on progress notes and 83.72% on the MiPACQ corpus using 10-fold cross validation. When the combined clinical Treebanks and Penn Treebank was used, of the three parsers, the Charniak parser achieved the highest Bracketing F-measure of 73.53% on progress notes and the Stanford parser reached the highest F-measure of 84.15% on the MiPACQ corpus. Conclusions Our study demonstrates that re-training using clinical Treebanks is critical for improving general English parsers' performance on clinical text, and combining clinical and open domain corpora might achieve optimal performance for parsing clinical text. |
| Related Links | https://bmcmedinformdecismak.biomedcentral.com/counter/pdf/10.1186/1472-6947-15-S1-S2.pdf |
| Ending Page | 6 |
| Page Count | 6 |
| Starting Page | 1 |
| File Format | HTM / HTML |
| ISSN | 14726947 |
| DOI | 10.1186/1472-6947-15-S1-S2 |
| Journal | BMC Medical Informatics and Decision Making |
| Issue Number | 1 |
| Volume Number | 15 |
| Language | English |
| Publisher | BioMed Central |
| Publisher Date | 2015-05-20 |
| Access Restriction | Open |
| Subject Keyword | Health Informatics Information Systems and Communication Service Management of Computing and Information Systems Medical language processing natural language processing parsing clinical text NLP |
| Content Type | Text |
| Resource Type | Article |
| Subject | Health Informatics Computer Science Applications Health Policy |
| Journal Impact Factor | 3.3/2023 |
| 5-Year Journal Impact Factor | 3.9/2023 |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|