Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature : BioMed Central |
|---|---|
| Author | Ma, Jinhui Akhtar-Danesh, Noori Dolovich, Lisa Thabane, Lehana |
| Abstract | Background Attrition, which leads to missing data, is a common problem in cluster randomized trials (CRTs), where groups of patients rather than individuals are randomized. Standard multiple imputation (MI) strategies may not be appropriate to impute missing data from CRTs since they assume independent data. In this paper, under the assumption of missing completely at random and covariate dependent missing, we compared six MI strategies which account for the intra-cluster correlation for missing binary outcomes in CRTs with the standard imputation strategies and complete case analysis approach using a simulation study. Method We considered three within-cluster and three across-cluster MI strategies for missing binary outcomes in CRTs. The three within-cluster MI strategies are logistic regression method, propensity score method, and Markov chain Monte Carlo (MCMC) method, which apply standard MI strategies within each cluster. The three across-cluster MI strategies are propensity score method, random-effects (RE) logistic regression approach, and logistic regression with cluster as a fixed effect. Based on the community hypertension assessment trial (CHAT) which has complete data, we designed a simulation study to investigate the performance of above MI strategies. Results The estimated treatment effect and its 95% confidence interval (CI) from generalized estimating equations (GEE) model based on the CHAT complete dataset are 1.14 (0.76 1.70). When 30% of binary outcome are missing completely at random, a simulation study shows that the estimated treatment effects and the corresponding 95% CIs from GEE model are 1.15 (0.76 1.75) if complete case analysis is used, 1.12 (0.72 1.73) if within-cluster MCMC method is used, 1.21 (0.80 1.81) if across-cluster RE logistic regression is used, and 1.16 (0.82 1.64) if standard logistic regression which does not account for clustering is used. Conclusion When the percentage of missing data is low or intra-cluster correlation coefficient is small, different approaches for handling missing binary outcome data generate quite similar results. When the percentage of missing data is large, standard MI strategies, which do not take into account the intra-cluster correlation, underestimate the variance of the treatment effect. Within-cluster and across-cluster MI strategies (except for random-effects logistic regression MI strategy), which take the intra-cluster correlation into account, seem to be more appropriate to handle the missing outcome from CRTs. Under the same imputation strategy and percentage of missingness, the estimates of the treatment effect from GEE and RE logistic regression models are similar. |
| Related Links | https://bmcmedresmethodol.biomedcentral.com/counter/pdf/10.1186/1471-2288-11-18.pdf |
| Ending Page | 15 |
| Page Count | 15 |
| Starting Page | 1 |
| File Format | HTM / HTML |
| ISSN | 14712288 |
| DOI | 10.1186/1471-2288-11-18 |
| Journal | BMC Medical Research Methodology |
| Issue Number | 1 |
| Volume Number | 11 |
| Language | English |
| Publisher | BioMed Central |
| Publisher Date | 2011-02-16 |
| Access Restriction | Open |
| Subject Keyword | Theory of Medicine Bioethics Statistical Theory and Methods Statistics for Life Sciences Medicine Health Sciences Propensity Score Multiple Imputation Generalize Estimate Equation Markov Chain Monte Carlo Method Estimate Treatment Effect Theory of Medicine/Bioethics |
| Content Type | Text |
| Resource Type | Article |
| Subject | Health Informatics Epidemiology |
| Journal Impact Factor | 3.9/2023 |
| 5-Year Journal Impact Factor | 6.5/2023 |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|