Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Greither, Cornelius |
| Copyright Year | 2015 |
| Abstract | To every abelian Galois extension K / k of number fields with group G, one can associate a so-called Brumer element $$\theta _{K/k,S}$$ of the rational group ring $$\mathbb Q[G]$$ (depending on another technical parameter S). In a certain sense this element can be thought of as an equivariant version of the class number $$h_K$$ . There is a slight problem since this element is only “almost” integral (that is, it may have non-integral coefficients). The potential denominators always divide $$w_K$$ , the number of roots of unity in K. Hayes (Contemp Math 358:193–205, 2004) raised the question whether the Brumer element will be p-integral under certain suitable hypotheses, one of which implies that p divides $$h_K$$ ; of course only situations with $$p|w_K$$ are of interest. This paper answers this question in the negative. We start with an “almost counterexample” over $$\mathbb Q$$ (for $$k=\mathbb {Q}$$ there are no true counterexamples) and manufacture true counterexamples in which k is a suitable real quadratic field. Using deep recent results on the distribution of class numbers (Bhargava et al.) one can show that the method in fact yields infinitely many counterexamples.Pour toute extension abélienne K / k de corps de nombres ayant G pour groupe de Galois, on sait construire un élément $$\theta _{K/k,S}$$ (appelé de Brumer) dans l’anneau de groupe $$\mathbb Q[G]$$ à coefficients rationnels. (Cet élément aussi dépend d’un paramètre auxiliaire S.) Dans un certain sens cet élément est une version équivariante du nombre $$h_K$$ de classes. Il y a un petit problème puisque $$\theta _{K/k,S}$$ n’est pas tout à fait entier (c’est-à-dire, à coefficients dans $$\mathbb Z$$ ). On peut toutefois l’écrire avec un dénominateur commun qui divise $$w_K$$ , le nombre de racines de l’unité contenues dans K. En 2004 D. Hayes posa la question: Est-ce que la p-intégralité de l’élément de Brumer est entraînée par quelques hypothèses bien adaptées (l’une parmi elles impliquant que le nombre $$h_K$$ est divisible par p)? Bien sûr, seuls les cas où p divise $$w_K$$ sont intéressants. Cet article établit une réponse négative à cette question. Pour commencer on regarde un “presque-contre-exemple” sur $$\mathbb Q$$ (il n’y a pas de vrai contre-exemple sur le corps des rationnels), et on le modifie pour trouver de vrais contre-exemples pour lesquels k est un corps réel quadratique. En utilisant de profonds résultats récents sur la distribution des nombres de classes (Bhargava et al.) on peut même montrer qu’il y a une infinité de contre-exemples. |
| Starting Page | 97 |
| Ending Page | 104 |
| Page Count | 8 |
| File Format | |
| ISSN | 21954755 |
| Journal | Annales mathématiques du Québec |
| Volume Number | 41 |
| Issue Number | 1 |
| e-ISSN | 21954763 |
| Language | English |
| Publisher | Springer International Publishing |
| Publisher Date | 2015-11-23 |
| Publisher Place | Cham |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Integrality Class numbers, class groups, discriminants Algebra L-functions Analysis Brumer elements Mathematics Class groups Number Theory Zeta functions and $L$-functions of number fields Cyclotomic extensions |
| Content Type | Text |
| Resource Type | Article |
| Subject | Mathematics |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|