Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Jensen, Erik Steen Peoples, Mark B. Boddey, Robert M. Gresshoff, Peter M. Hauggaard Nielsen, Henrik Alves, Bruno Morrison, Malcolm J. |
| Copyright Year | 2011 |
| Abstract | Humans are currently confronted by many global challenges. These include achieving food security for a rapidly expanding population, lowering the risk of climate change by reducing the net release of greenhouse gases into the atmosphere due to human activity, and meeting the increasing demand for energy in the face of dwindling reserves of fossil energy and uncertainties about future reliability of supply. Legumes deliver several important services to societies. They provide important sources of oil, fiber, and protein-rich food and feed while supplying nitrogen (N) to agro-ecosystems via their unique ability to fix atmospheric N$_{2}$ in symbiosis with the soil bacteria rhizobia, increasing soil carbon content, and stimulating the productivity of the crops that follow. However, the role of legumes has rarely been considered in the context of their potential to contribute to the mitigation of climate change by reducing fossil fuel use or by providing feedstock for the emerging biobased economies where fossil sources of energy and industrial raw materials are replaced in part by sustainable and renewable biomass resources. The aim of this review was to collate the current knowledge regarding the capacity of legumes to (1) lower the emissions of the key greenhouse gases carbon dioxide (CO$_{2}$) and nitrous oxide (N$_{2}$O) compared to N-fertilized systems, (2) reduce the fossil energy used in the production of food and forage, (3) contribute to the sequestration of carbon (C) in soils, and (4) provide a viable source of biomass for the generation of biofuels and other materials in future biorefinery concepts. We estimated that globally between 350 and 500 Tg CO$_{2}$ could be emitted as a result of the 33 to 46 Tg N that is biologically fixed by agricultural legumes each year. This compares to around 300 Tg CO$_{2}$ released annually from the manufacture of 100 Tg fertilizer N. The main difference is that the CO$_{2}$ respired from the nodulated roots of N$_{2}$-fixing legumes originated from photosynthesis and will not represent a net contribution to atmospheric concentrations of CO$_{2}$, whereas the CO$_{2}$ generated during the synthesis of N fertilizer was derived from fossil fuels. Experimental measures of total N$_{2}$O fluxes from legumes and N-fertilized systems were found to vary enormously (0.03–7.09 and 0.09–18.16 kg N$_{2}$O–N ha$^{−1}$, respectively). This reflected the data being collated from a diverse range of studies using different rates of N inputs, as well as the large number of climatic, soil, and management variables known to influence denitrification and the portion of the total N lost as N$_{2}$O. Averages across 71 site-years of data, soils under legumes emitted a total of 1.29 kg N$_{2}$O–N ha$^{−1}$ during a growing season. This compared to a mean of 3.22 kg N$_{2}$O–N ha$^{−1}$ from 67 site-years of N-fertilized crops and pastures, and 1.20 kg N$_{2}$O–N ha$^{−1}$ from 33 site-years of data collected from unplanted soils or unfertilized non-legumes. It was concluded that there was little evidence that biological N$_{2}$ fixation substantially contributed to total N$_{2}$O emissions, and that losses of N$_{2}$O from legume soil were generally lower than N-fertilized systems, especially when commercial rates of N fertilizer were applied. Elevated rates of N$_{2}$O losses can occur following the termination of legume-based pastures, or where legumes had been green- or brown-manured and there was a rapid build-up of high concentrations of nitrate in soil. Legume crops and legume-based pastures use 35% to 60% less fossil energy than N-fertilized cereals or grasslands, and the inclusion of legumes in cropping sequences reduced the average annual energy usage over a rotation by 12% to 34%. The reduced energy use was primarily due to the removal of the need to apply N fertilizer and the subsequently lower N fertilizer requirements for crops grown following legumes. Life cycle energy balances of legume-based rotations were also assisted by a lower use of agrichemicals for crop protection as diversification of cropping sequences reduce the incidence of cereal pathogens and pests and assisted weed control, although it was noted that differences in fossil energy use between legumes and N-fertilized systems were greatly diminished if energy use was expressed per unit of biomass or grain produced. For a change in land use to result in a net increase C sequestration in soil, the inputs of C remaining in plant residues need to exceed the CO$_{2}$ respired by soil microbes during the decomposition of plant residues or soil organic C, and the C lost through wind or water erosion. The net N-balance of the system was a key driver of changes in soil C stocks in many environments, and data collected from pasture, cropping, and agroforestry systems all indicated that legumes played a pivotal role in providing the additional organic N required to encourage the accumulation of soil C at rates greater than can be achieved by cereals or grasses even when they were supplied with N fertilizer. Legumes contain a range of compounds, which could be refined to produce raw industrial materials currently manufactured from petroleum-based sources, pharmaceuticals, surfactants, or food additives as valuable by-products if legume biomass was to be used to generate biodiesel, bioethanol, biojet A1 fuel, or biogas. The attraction of using leguminous material feedstock is that they do not need the inputs of N fertilizer that would otherwise be necessary to support the production of high grain yields or large amounts of plant biomass since it is the high fossil energy use in the synthesis, transport, and application of N fertilizers that often negates much of the net C benefits of many other bioenergy sources. The use of legume biomass for biorefineries needs careful thought as there will be significant trade-offs with the current role of legumes in contributing to the organic fertility of soils. Agricultural systems will require novel management and plant breeding solutions to provide the range of options that will be required to mitigate climate change. Given their array of ecosystem services and their ability to reduce greenhouse gas emissions, lower the use of fossil energy, accelerate rates of C sequestration in soil, and provide a valuable source of feedstock for biorefineries, legumes should be considered as important components in the development of future agroecosystems. |
| Starting Page | 329 |
| Ending Page | 364 |
| Page Count | 36 |
| File Format | |
| ISSN | 17740746 |
| Journal | Agronomy for Sustainable Development |
| Volume Number | 32 |
| Issue Number | 2 |
| e-ISSN | 17730155 |
| Language | English |
| Publisher | Springer-Verlag |
| Publisher Date | 2011-10-19 |
| Publisher Institution | Institut National de la Recherche Agronomique (INRA) |
| Publisher Place | Paris |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Legumes Biological N$_{2}$ fixation Carbon sequestration Greenhouse gases Biorefinery Biofuels Soil Science & Conservation Agriculture Sustainable Development |
| Content Type | Text |
| Resource Type | Article |
| Subject | Environmental Engineering Agronomy and Crop Science |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|