WebSite Logo
  • Content
  • Similar Resources
  • Metadata
  • Cite This
  • Log-in
  • Fullscreen
Log-in
Do not have an account? Register Now
Forgot your password? Account recovery
  1. Journal of Agricultural, Biological, and Environmental Statistics
  2. Journal of Agricultural, Biological, and Environmental Statistics : Volume 14
  3. Journal of Agricultural, Biological, and Environmental Statistics : Volume 14, Issue 4, December 2009
  4. Maximum likelihood estimation of regression parameters with spatially dependent discrete data
Loading...

Please wait, while we are loading the content...

Journal of Agricultural, Biological, and Environmental Statistics : Volume 22
Journal of Agricultural, Biological, and Environmental Statistics : Volume 21
Journal of Agricultural, Biological, and Environmental Statistics : Volume 20
Journal of Agricultural, Biological, and Environmental Statistics : Volume 19
Journal of Agricultural, Biological, and Environmental Statistics : Volume 18
Journal of Agricultural, Biological, and Environmental Statistics : Volume 17
Journal of Agricultural, Biological, and Environmental Statistics : Volume 16
Journal of Agricultural, Biological, and Environmental Statistics : Volume 15
Journal of Agricultural, Biological, and Environmental Statistics : Volume 14
Journal of Agricultural, Biological, and Environmental Statistics : Volume 14, Issue 4, December 2009
Maximum likelihood estimation of regression parameters with spatially dependent discrete data
Enhanced diagnostics for the spatial analysis of field trials
Integrated data analysis in the presence of emigration and mark loss
Analyzing designed experiments in distance sampling
A graphical method for dating chicks using bivariate body measurements
A nonparametric lower bound for the number of species shared by multiple communities
Testing for the equality of EC50 values in the presence of unequal slopes with application to toxicity of selenium types
A composite Latin rectangle and nonstandard strip block design
Editorial collaborators ( Journal of Agricultural, Biological, and Environmental Statistics , Volume 14 , Issue 4 )
Journal of Agricultural, Biological, and Environmental Statistics : Volume 14, Issue 3, September 2009
Journal of Agricultural, Biological, and Environmental Statistics : Volume 14, Issue 2, June 2009
Journal of Agricultural, Biological, and Environmental Statistics : Volume 14, Issue 1, March 2009
Journal of Agricultural, Biological, and Environmental Statistics : Volume 13
Journal of Agricultural, Biological, and Environmental Statistics : Volume 12
Journal of Agricultural, Biological, and Environmental Statistics : Volume 11
Journal of Agricultural, Biological, and Environmental Statistics : Volume 10
Journal of Agricultural, Biological, and Environmental Statistics : Volume 9
Journal of Agricultural, Biological, and Environmental Statistics : Volume 8
Journal of Agricultural, Biological, and Environmental Statistics : Volume 7
Journal of Agricultural, Biological, and Environmental Statistics : Volume 6

Similar Documents

...
Continuous-Time Proportional Hazards Regression for Ecological Monitoring Data

Article

...
Continuous Spatial Process Models for Spatial Extreme Values

Article

...
Maximum likelihood estimation of regression parameters with spatially dependent discrete data

Article

...
An investigation of humus disintegration by spatial-temporal regression analysis

Article

...
Using the truncated auto-Poisson model for spatially correlated counts of vegetation

Article

...
On Estimation and Selection of Autologistic Regression Models via Penalized Pseudolikelihood

Article

...
copCAR: A Flexible Regression Model for Areal Data

...
Extended Burr XII Regression Models: Theory and Applications

Article

...
Gaussian Copula Mixed Models for Clustered Mixed Outcomes, With Application in Developmental Toxicology

Article

Maximum likelihood estimation of regression parameters with spatially dependent discrete data

Content Provider Springer Nature Link
Author Madsen, L.
Copyright Year 2009
Abstract Generalized estimating equations (GEEs) have been successfully used to estimate regression parameters from discrete longitudinal data. GEEs have been adapted for spatially correlated count data with less success. It is convenient to model correlated counts as lognormal-Poisson, where a latent lognormal random process carries all correlation. This model limits correlation and can lead to negative bias of standard errors. Moreover, correlation is not the best dependence measure for highly nonnormal data. This article proposes a model which yields maximum likelihood (ML) estimates of regression parameters when the response is discrete and spatially dependent. This model employs a spatial Gaussian copula, bringing the discrete distribution into the Gaussian geostatistical framework, where correlation completely describes dependence. The model yields a log-likelihood for regression parameters that can be maximized using established numerical methods. The proposed procedure is used to estimate the relationship between Japanese beetle grub counts and soil organic matter. These data exhibit residual correlation well above the lognormal-Poisson correlation limit, so that model is not appropriate. The data and MATLAB code are available online. Simulations demonstrate that negative bias in GEE standard errors leads to nominal 95% confidence coverage less than 62% for moderate or strong spatial dependence, whereas ML coverage remains above 82%.
Starting Page 375
Ending Page 391
Page Count 17
File Format PDF
ISSN 10857117
Journal Journal of Agricultural, Biological, and Environmental Statistics
Volume Number 14
Issue Number 4
e-ISSN 15372693
Language English
Publisher Springer-Verlag
Publisher Date 2009-01-01
Publisher Place New York
Access Restriction One Nation One Subscription (ONOS)
Subject Keyword Continuous extension Correlated count data Dependent count data Gaussian copula Spatial copula Statistics for Life Sciences, Medicine, Health Sciences Agriculture Environmental Monitoring/Analysis Biostatistics
Content Type Text
Resource Type Article
Subject Applied Mathematics Statistics and Probability Environmental Science Agricultural and Biological Sciences Statistics, Probability and Uncertainty
  • About
  • Disclaimer
  • Feedback
  • Sponsor
  • Contact
  • Chat with Us
About National Digital Library of India (NDLI)
NDLI logo

National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.

Learn more about this project from here.

Disclaimer

NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.

Feedback

Sponsor

Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.

Contact National Digital Library of India
Central Library (ISO-9001:2015 Certified)
Indian Institute of Technology Kharagpur
Kharagpur, West Bengal, India | PIN - 721302
See location in the Map
03222 282435
Mail: support@ndl.gov.in
Sl. Authority Responsibilities Communication Details
1 Ministry of Education (GoI),
Department of Higher Education
Sanctioning Authority https://www.education.gov.in/ict-initiatives
2 Indian Institute of Technology Kharagpur Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project https://www.iitkgp.ac.in
3 National Digital Library of India Office, Indian Institute of Technology Kharagpur The administrative and infrastructural headquarters of the project Dr. B. Sutradhar  bsutra@ndl.gov.in
4 Project PI / Joint PI Principal Investigator and Joint Principal Investigators of the project Dr. B. Sutradhar  bsutra@ndl.gov.in
Prof. Saswat Chakrabarti  will be added soon
5 Website/Portal (Helpdesk) Queries regarding NDLI and its services support@ndl.gov.in
6 Contents and Copyright Issues Queries related to content curation and copyright issues content@ndl.gov.in
7 National Digital Library of India Club (NDLI Club) Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach clubsupport@ndl.gov.in
8 Digital Preservation Centre (DPC) Assistance with digitizing and archiving copyright-free printed books dpc@ndl.gov.in
9 IDR Setup or Support Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops idr@ndl.gov.in
I will try my best to help you...
Cite this Content
Loading...