WebSite Logo
  • Content
  • Similar Resources
  • Metadata
  • Cite This
  • Log-in
  • Fullscreen
Log-in
Do not have an account? Register Now
Forgot your password? Account recovery
  1. Australasian Physics & Engineering Sciences in Medicine
  2. Australasian Physics & Engineering Sciences in Medicine : Volume 24
  3. Australasian Physics & Engineering Sciences in Medicine : Volume 24, Issue 3, September 2001
  4. The use of the linear quadratic model in radiotherapy: a review
Loading...

Please wait, while we are loading the content...

Australasian Physics & Engineering Sciences in Medicine : Volume 40
Australasian Physics & Engineering Sciences in Medicine : Volume 39
Australasian Physics & Engineering Sciences in Medicine : Volume 38
Australasian Physics & Engineering Sciences in Medicine : Volume 37
Australasian Physics & Engineering Sciences in Medicine : Volume 36
Australasian Physics & Engineering Sciences in Medicine : Volume 35
Australasian Physics & Engineering Sciences in Medicine : Volume 34
Australasian Physics & Engineering Sciences in Medicine : Volume 33
Australasian Physics & Engineering Sciences in Medicine : Volume 32
Australasian Physics & Engineering Sciences in Medicine : Volume 31
Australasian Physics & Engineering Sciences in Medicine : Volume 30
Australasian Physics & Engineering Sciences in Medicine : Volume 29
Australasian Physics & Engineering Sciences in Medicine : Volume 28
Australasian Physics & Engineering Sciences in Medicine : Volume 27
Australasian Physics & Engineering Sciences in Medicine : Volume 26
Australasian Physics & Engineering Sciences in Medicine : Volume 25
Australasian Physics & Engineering Sciences in Medicine : Volume 24
Australasian Physics & Engineering Sciences in Medicine : Volume 24, Issue 4, December 2001
Australasian Physics & Engineering Sciences in Medicine : Volume 24, Issue 3, September 2001
Recommendations for a mammography quality assurance program
The use of the linear quadratic model in radiotherapy: a review
The effect of source-axis distance on integral dose: implications for IMRT
Proposal for a gamma-emitting stent for the prevention and treatment of coronary artery restenosis
The use of$^{188}$Re to treat in-stent re-stenosis of coronary arteries
Determination of radiographic characteristics of tissue compensation filters using a Compton scatter technique
The clinical value of ophthalmic electrodiagnosis in children
Verification of ophthalmic brachytherapy treatment planning
The performance of a NERO 8000 non-invasive x-ray beam analyser when measuring tube voltage under fluoroscopic conditions
Australasian Physics & Engineering Sciences in Medicine : Volume 24, Issue 2, June 2001
Australasian Physics & Engineering Sciences in Medicine : Volume 24, Issue 1, March 2001

Similar Documents

...
Of what use is radiobiological modelling?

Article

...
Radiobiological indices that consider volume: a review

Article

...
Radiotherapy DICOM packet sniffing

Article

...
The physics of radiotherapy X-rays and electrons

Book Review

...
A brief review of radiation hormesis

Article

...
Applied imaging technology

Book Review

...
Stereotactic synchrotron microbeam radiotherapy

Article

...
Radiobiological model comparison of 3D conformal radiotherapy and IMRT plans for the treatment of prostate cancer

Article

...
On the use of published radiobiological parameters and the evaluation of NTCP models regarding lung pneumonitis in clinical breast radiotherapy

Article

The use of the linear quadratic model in radiotherapy: a review

Content Provider Springer Nature Link
Author Jones, L. Hoban, P. Metcalfe, P.
Copyright Year 2001
Abstract To be able to predict the impact of any radiotherapy treatment the physics of radiation interactions and the expected biological effect for any radiotherapy treatment situation (dose, fractionation, modality) must be both understood and modelled. This review considers the current use and accuracy of the linear quadratic model which can be used to consider the variation in tissue response with fraction size. Cell kill following radiation damage results from damage to the DNA which can take a variety of forms. In many cases the linear quadratic model is used to estimate the relative impact for different situations especially clinical studies relating to fraction size. This is mainly undertaken using parameters derived from the linear quadratic model such as biological effective dose and standard effective dose. The model has also been adapted to consider the effect of overall treatment time, repair during treatment (as occurs for brachytherapy treatments) and other situations. There are some concerns over its use, mainly in the small dose ranges (both total low doses and low doses per fraction) where studies have shown its inaccuracy. In other situations however it does appear to provide a reasonable estimate of relative clinical effect. As with all models, however results should never be considered out of clinical context.
Starting Page 132
Ending Page 146
Page Count 15
File Format PDF
ISSN 01589938
Journal Australasian Physics & Engineering Sciences in Medicine
Volume Number 24
Issue Number 3
e-ISSN 18795447
Language English
Publisher Springer Netherlands
Publisher Date 2001-01-01
Publisher Place Dordrecht
Access Restriction Subscribed
Subject Keyword linear quadratic model radiobiological modelling fractionation review Biomedicine general Biophysics and Biological Physics Medical and Radiation Physics Biomedical Engineering Theoretical, Mathematical and Computational Physics
Content Type Text
Resource Type Article
Subject Radiology, Nuclear Medicine and Imaging Physics and Astronomy Biophysics Biomedical Engineering
  • About
  • Disclaimer
  • Feedback
  • Sponsor
  • Contact
  • Chat with Us
About National Digital Library of India (NDLI)
NDLI logo

National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.

Learn more about this project from here.

Disclaimer

NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.

Feedback

Sponsor

Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.

Contact National Digital Library of India
Central Library (ISO-9001:2015 Certified)
Indian Institute of Technology Kharagpur
Kharagpur, West Bengal, India | PIN - 721302
See location in the Map
03222 282435
Mail: support@ndl.gov.in
Sl. Authority Responsibilities Communication Details
1 Ministry of Education (GoI),
Department of Higher Education
Sanctioning Authority https://www.education.gov.in/ict-initiatives
2 Indian Institute of Technology Kharagpur Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project https://www.iitkgp.ac.in
3 National Digital Library of India Office, Indian Institute of Technology Kharagpur The administrative and infrastructural headquarters of the project Dr. B. Sutradhar  bsutra@ndl.gov.in
4 Project PI / Joint PI Principal Investigator and Joint Principal Investigators of the project Dr. B. Sutradhar  bsutra@ndl.gov.in
Prof. Saswat Chakrabarti  will be added soon
5 Website/Portal (Helpdesk) Queries regarding NDLI and its services support@ndl.gov.in
6 Contents and Copyright Issues Queries related to content curation and copyright issues content@ndl.gov.in
7 National Digital Library of India Club (NDLI Club) Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach clubsupport@ndl.gov.in
8 Digital Preservation Centre (DPC) Assistance with digitizing and archiving copyright-free printed books dpc@ndl.gov.in
9 IDR Setup or Support Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops idr@ndl.gov.in
I will try my best to help you...
Cite this Content
Loading...