Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Das, Sujan Kumar Hasan, Monirul Islam, Jahid M. M. Khan, Mubarak Ahmad Abdul Gafur, Md. Hoque, Enamul |
| Copyright Year | 2017 |
| Abstract | Carbon nanotube (CNT) reinforced polyvinyl alcohol (PVA) composite thin films have been prepared by a solution casting process at room temperature using gum acacia as a surfactant. CNT contents in the composites were varied from 5 to 10% by weight to increase its electrical conductivity. Electrical properties, such as conductivity, capacitance, dielectric constant and loss tangent, of the composites were investigated. All the electrical properties were found to be improved with the incorporation of CNTs. The absorbance and transmittance of light were determined by UV–visible spectroscopy and from the transmittance data, band gaps were calculated. The smallest band gap, of 1.18 eV, was found for the 10% CNT containing composite while the 0% CNT containing composite had a band gap of 2.4 eV. Thermal properties of the films were characterized by a thermo mechanical analyzer. The experimental results revealed that the blended films exhibited higher stability and improved thermal properties, which suggests the occurrence of an interaction, detected by FTIR, among PVA, CNT and water molecules in the films. The mechanical properties, tensile strength, elongation at break and Young modulus, were found to be improved. Water absorption properties of the composites were found to decrease with the increase of CNT content. The lowest water uptake properties and highest thermal stability were demonstrated by 10% CNT containing film. All of the results indicated that the developed PVA/CNT composite might be promising for use in optoelectronic application. |
| Starting Page | 338 |
| Ending Page | 350 |
| Page Count | 13 |
| File Format | |
| ISSN | 0972656X |
| Journal | International Journal of Plastics Technology |
| Volume Number | 21 |
| Issue Number | 2 |
| e-ISSN | 0975072X |
| Language | English |
| Publisher | Springer India |
| Publisher Date | 2017-10-27 |
| Publisher Place | New Delhi |
| Access Restriction | Subscribed |
| Subject Keyword | Carbon nanotube PVA Band gap Thermal properties Nanocomposite Thin film Polymer Sciences Materials Science |
| Content Type | Text |
| Resource Type | Article |
| Subject | Polymers and Plastics |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|