Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Gormley, Padhraig Li, Kang Wolkenhauer, Olaf Irwin, George W. Du, Dajun |
| Copyright Year | 2012 |
| Abstract | A major challenge when attempting to model biochemical reaction networks within the cell is that the dimensionality can become huge, where a large number of molecular species can be involved even in relatively small networks. This investigation attempts to infer models of these networks using a co-evolutionary algorithm that reverse engineers differential equation models of the target system from time-series data. The algorithm not only estimates the system parameters, but also the symbolic structure of the network. To reduce the problem of dimensionality, the algorithm uses a partitioning method while integrating candidate models in order to decouple system equations. In addition, the conventional evolutionary algorithm has been modified and extended to include a technique called ‘eng-genes’, where candidate models are built up from fundamental mathematical terms derived from knowledge about the target system a priori. This technique essentially focuses the search on more biologically plausible models. The approach is demonstrated on several example reaction networks. The results show that the eng-genes method of limiting the term pool using a priori knowledge improves the convergence of the reverse engineering process compared with the conventional method, resulting in more accurate and transparent models. |
| Starting Page | 106 |
| Ending Page | 118 |
| Page Count | 13 |
| File Format | |
| ISSN | 18669956 |
| Journal | Cognitive Computation |
| Volume Number | 5 |
| Issue Number | 1 |
| e-ISSN | 18669964 |
| Language | English |
| Publisher | Springer-Verlag |
| Publisher Date | 2012-07-03 |
| Publisher Place | New York |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Reverse engineering System identification Evolutionary programming Symbolic identification Parameter estimation Modelling Neurosciences Computation by Abstract Devices Artificial Intelligence (incl. Robotics) Computational Biology/Bioinformatics |
| Content Type | Text |
| Resource Type | Article |
| Subject | Cognitive Neuroscience Computer Science Applications Computer Vision and Pattern Recognition |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|