Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Wu, Tianqi Yao, Min Yang, Jianhua |
| Copyright Year | 2017 |
| Abstract | As a novel learning algorithm for a single hidden-layer feedforward neural network, the extreme learning machine has attracted much research attention for its fast training speed and good generalization performances. Instead of iteratively tuning the parameters, the extreme machine can be seen as a linear optimization problem by randomly generating the input weights and hidden biases. However, the random determination of the input weights and hidden biases may bring non-optimal parameters, which have a negative impact on the final results or need more hidden nodes for the neural network. To overcome the above drawbacks caused by the non-optimal input weights and hidden biases, we propose a new hybrid learning algorithm named dolphin swarm algorithm extreme learning machine adopting the dolphin swarm algorithm to optimize the input weights and hidden biases efficiently. Each set of input weights and hidden biases is encoded into one vector, namely the dolphin. The dolphins are evaluated by root mean squared error and updated by the four pivotal phases of the dolphin swarm algorithm. Eventually, we will obtain an optimal set of input weights and hidden biases. To evaluate the effectiveness of our method, we compare the proposed algorithm with the standard extreme learning machine and three state-of-the-art methods, which are the particle swarm optimization extreme learning machine, evolutionary extreme learning machine, and self-adaptive evolutionary extreme learning machine, under 13 benchmark datasets obtained from the University of California Irvine Machine Learning Repository. The experimental results demonstrate that the proposed method can achieve superior generalization performances than all the compared algorithms. |
| Starting Page | 275 |
| Ending Page | 284 |
| Page Count | 10 |
| File Format | |
| ISSN | 18669956 |
| Journal | Cognitive Computation |
| Volume Number | 9 |
| Issue Number | 2 |
| e-ISSN | 18669964 |
| Language | English |
| Publisher | Springer US |
| Publisher Date | 2017-02-27 |
| Publisher Place | New York |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Single hidden-layer feedforward neural network Extreme learning machine Dolphin swarm algorithm Hybrid algorithm Neurosciences Computation by Abstract Devices Artificial Intelligence (incl. Robotics) Computational Biology/Bioinformatics |
| Content Type | Text |
| Resource Type | Article |
| Subject | Cognitive Neuroscience Computer Science Applications Computer Vision and Pattern Recognition |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|