Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Siegert, Ingo Philippou Hübner, David Hartmann, Kim Böck, Ronald Wendemuth, Andreas |
| Copyright Year | 2014 |
| Abstract | For successful human–machine-interaction (HCI) the pure textual information and the individual skills, preferences, and affective states of the user must be known. Therefore, as a starting point, the user’s actual affective state has to be recognized. In this work we investigated how additional knowledge, for example age and gender of the user, can be used to improve recognition of affective state. Two methods from automatic speech recognition are used to incorporate age and gender differences in recognition of affective state: speaker group-dependent (SGD) modelling and vocal tract length normalisation (VTLN). The investigations were performed on four corpora with acted and natural affected speech. Different features and two methods of classification (Gaussian mixture models (GMMs) and multi-layer perceptrons (MLPs)) were used. In addition, the effects of channel compensation and contextual characteristics were analysed. The results are compared with our own baseline results and with results reported in the literature. Two hypotheses were tested. First, incorporation of age information further improves speaker group-dependent modelling. Second, acoustic normalization does not achieve the same improvement as achieved by speaker group-dependent modelling, because the age and gender of a speaker affects the way emotions are expressed. |
| Starting Page | 892 |
| Ending Page | 913 |
| Page Count | 22 |
| File Format | |
| ISSN | 18669956 |
| Journal | Cognitive Computation |
| Volume Number | 6 |
| Issue Number | 4 |
| e-ISSN | 18669964 |
| Language | English |
| Publisher | Springer US |
| Publisher Date | 2014-08-23 |
| Publisher Place | Boston |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Affect recognition Companion systems Vocal tract length normalization Speaker group-dependent classifiers Neurosciences Computation by Abstract Devices Artificial Intelligence (incl. Robotics) Computational Biology/Bioinformatics |
| Content Type | Text |
| Resource Type | Article |
| Subject | Cognitive Neuroscience Computer Science Applications Computer Vision and Pattern Recognition |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|