Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Grekova, E. F. |
| Copyright Year | 2012 |
| Abstract | We consider a linear reduced Cosserat medium: a linear elastic continuum, whose point bodies possess kinematically independent translational and rotational degrees of freedom, but the strain energy does not depend on the gradient of rotation of particles. In such a medium the force stress tensor is asymmetric, but the couple stress tensor is zero. This model can be applied for description of soils and granular media. Since for the time being the experimental technique for measurement of rotational deformations is not well developed, we investigate how the presence of rotational degrees of freedom affects the dynamics of translational displacements. We consider the case of the spherical tensor of inertia and isotropy with respect to the rotational degrees of freedom. Integration of the equation of balance of torques lets us in several cases to put in correspondence a linear reduced Cosserat continuum with the spherical tensor of inertia with a classical (non-polar elastic linear) medium with memory with the same equation for the balance of forces, written in terms of translational displacements. This is possible for the isotropic case and also if the anisotropy is present only in the tensor of elastic constants corresponding to the classical strain tensor. If the material is isotropic with respect to rotational deformations but the (anisotropic) coupling between rotational and classical translational strains is present, then the corresponding classical medium does not exist. If we ignore the rotational degrees of freedom when this coupling is present, this will lead us to the conclusion that the principle of material objectivity is violated. |
| Starting Page | 538 |
| Ending Page | 543 |
| Page Count | 6 |
| File Format | |
| ISSN | 00256544 |
| Journal | Mechanics of Solids |
| Volume Number | 47 |
| Issue Number | 5 |
| e-ISSN | 19347936 |
| Language | English |
| Publisher | Allerton Press, Inc. |
| Publisher Date | 2012-11-18 |
| Publisher Place | Heidelberg |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | reduced Cosserat medium constitutive equations anisotropy Mechanics |
| Content Type | Text |
| Resource Type | Article |
| Subject | Physics and Astronomy Mechanics of Materials |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|