WebSite Logo
  • Content
  • Similar Resources
  • Metadata
  • Cite This
  • Log-in
  • Fullscreen
Log-in
Do not have an account? Register Now
Forgot your password? Account recovery
  1. Journal d'Analyse Mathématique
  2. Journal d'Analyse Mathématique : Volume 111
  3. Journal d'Analyse Mathématique : Volume 111, Issue 1, May 2010
  4. Bounded harmonic mappings
Loading...

Please wait, while we are loading the content...

Journal d'Analyse Mathématique : Volume 132
Journal d'Analyse Mathématique : Volume 131
Journal d'Analyse Mathématique : Volume 130
Journal d'Analyse Mathématique : Volume 129
Journal d'Analyse Mathématique : Volume 128
Journal d'Analyse Mathématique : Volume 127
Journal d'Analyse Mathématique : Volume 126
Journal d'Analyse Mathématique : Volume 125
Journal d'Analyse Mathématique : Volume 124
Journal d'Analyse Mathématique : Volume 123
Journal d'Analyse Mathématique : Volume 122
Journal d'Analyse Mathématique : Volume 121
Journal d'Analyse Mathématique : Volume 120
Journal d'Analyse Mathématique : Volume 119
Journal d'Analyse Mathématique : Volume 118
Journal d'Analyse Mathématique : Volume 117
Journal d'Analyse Mathématique : Volume 116
Journal d'Analyse Mathématique : Volume 115
Journal d'Analyse Mathématique : Volume 114
Journal d'Analyse Mathématique : Volume 113
Journal d'Analyse Mathématique : Volume 112
Journal d'Analyse Mathématique : Volume 111
Journal d'Analyse Mathématique : Volume 111, Issue 1, May 2010
Bilipschitz homogeneity and inner diameter distance
Bounded harmonic mappings
Idempotent ultrafilters, multipleweak mixing and Szemerédi’s theorem for generalized polynomials
Deducing the multidimensional Szemerédi theorem from an infinitary removal lemma
Scaling limits for internal aggregation models with multiple sources
Resolution of singularities, asymptotic expansions of integrals and related phenomena
The Hilbert transform of a measure
Concentration phenomena in nonlinear eigenvalue problems with variable exponents and sign-changing potential
Thomae’s formula for Z $_{n}$ curves
Wavelet expansions for weighted, vector-valued BMO functions
Entire extensions and exponential decay for semilinear elliptic equations
The discrete maximal operator in metric spaces
Journal d'Analyse Mathématique : Volume 110
Journal d'Analyse Mathématique : Volume 109
Journal d'Analyse Mathématique : Volume 108
Journal d'Analyse Mathématique : Volume 107
Journal d'Analyse Mathématique : Volume 106
Journal d'Analyse Mathématique : Volume 105
Journal d'Analyse Mathématique : Volume 104
Journal d'Analyse Mathématique : Volume 103
Journal d'Analyse Mathématique : Volume 102
Journal d'Analyse Mathématique : Volume 101
Journal d'Analyse Mathématique : Volume 100
Journal d'Analyse Mathématique : Volume 99
Journal d'Analyse Mathématique : Volume 98
Journal d'Analyse Mathématique : Volume 97
Journal d'Analyse Mathématique : Volume 96
Journal d'Analyse Mathématique : Volume 95
Journal d'Analyse Mathématique : Volume 94
Journal d'Analyse Mathématique : Volume 93
Journal d'Analyse Mathématique : Volume 92
Journal d'Analyse Mathématique : Volume 91
Journal d'Analyse Mathématique : Volume 90
Journal d'Analyse Mathématique : Volume 89
Journal d'Analyse Mathématique : Volume 88
Journal d'Analyse Mathématique : Volume 87
Journal d'Analyse Mathématique : Volume 86
Journal d'Analyse Mathématique : Volume 85
Journal d'Analyse Mathématique : Volume 84
Journal d'Analyse Mathématique : Volume 83
Journal d'Analyse Mathématique : Volume 82
Journal d'Analyse Mathématique : Volume 81
Journal d'Analyse Mathématique : Volume 80
Journal d'Analyse Mathématique : Volume 79
Journal d'Analyse Mathématique : Volume 78
Journal d'Analyse Mathématique : Volume 77
Journal d'Analyse Mathématique : Volume 76
Journal d'Analyse Mathématique : Volume 75
Journal d'Analyse Mathématique : Volume 74
Journal d'Analyse Mathématique : Volume 73
Journal d'Analyse Mathématique : Volume 72
Journal d'Analyse Mathématique : Volume 71

Similar Documents

...
Univalent Σ-harmonic mappings: connections with quasiconformal mappings

Article

...
BMO-quasiconformal mappings

Article

...
The Schwarzian derivative for harmonic mappings

Article

...
Boundary values versus dilatations of harmonic mappings

Article

...
Bounded rank-1 transformations

Article

...
Unique extremality of quasiconformal mappings

Article

...
Quasiregular mappings to generalized manifolds

Article

...
Mappings with finite length distortion

Article

...
Limits of Teichmüller mappings on trajectories

Article

Bounded harmonic mappings

Content Provider Springer Nature Link
Author Szapiel, Wojciech
Copyright Year 2010
Abstract Denote by B(τ) the class of all complex functions of the form $$ f(z) \equiv \tau + \sum\limits_{n = 1}^\infty {(a_n (f)z^n + \overline {b_n (f)} \bar z^n )} $$ that are harmonic in the open unit disk ⅅ with f (ⅅ) ⊂ ⅅ. Both B(τ) and some of its closed convex subsets are strongly convex, e.g., $$ \Lambda (\tau ) = \{ f \in {\rm B}(\tau ):b_n (f) = 0 for all n \geqslant 1\} . $$ Simple extremal problems in B(τ) may have nontrivial solutions. To find them, we present various methods: the method of subordination, the Poisson integral, and calculus of variations. For instance, by analogy to the known result $$ a_n (\Lambda (\tau )) = \{ w:|w| \leqslant 1 - |\tau |^2 \} , $$ we find the variability regions $$ a_n (B(\tau )) = b_n (B(\tau )) = \{ w:|w| \leqslant \phi (1/\phi ^{ - 1} (|\tau |))\} , $$ where $$ \phi (x) \equiv \frac{1} {\pi }\int_0^\pi {\frac{{x + \cos t}} {{\sqrt {x^2 + 2x\cos t + 1} }}} dt. $$ . In the case n = 1, |τ| < 2/π (resp., |τ| = 2/π), the extremal functions realizing points of the circle {w: |w| = φ (1/φ$^{−1}$(|τ|))} are univalent self-mappings of the disk ⅅ (resp., univalent mappings of ⅅ onto a half unit disk).
Starting Page 47
Ending Page 76
Page Count 30
File Format PDF
ISSN 00217670
Journal Journal d'Analyse Mathématique
Volume Number 111
Issue Number 1
e-ISSN 15658538
Language English
Publisher The Hebrew University Magnes Press
Publisher Date 2010-12-19
Publisher Place Heidelberg
Access Restriction One Nation One Subscription (ONOS)
Subject Keyword Partial Differential Equations Abstract Harmonic Analysis Dynamical Systems and Ergodic Theory Functional Analysis Analysis
Content Type Text
Resource Type Article
Subject Analysis
  • About
  • Disclaimer
  • Feedback
  • Sponsor
  • Contact
  • Chat with Us
About National Digital Library of India (NDLI)
NDLI logo

National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.

Learn more about this project from here.

Disclaimer

NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.

Feedback

Sponsor

Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.

Contact National Digital Library of India
Central Library (ISO-9001:2015 Certified)
Indian Institute of Technology Kharagpur
Kharagpur, West Bengal, India | PIN - 721302
See location in the Map
03222 282435
Mail: support@ndl.gov.in
Sl. Authority Responsibilities Communication Details
1 Ministry of Education (GoI),
Department of Higher Education
Sanctioning Authority https://www.education.gov.in/ict-initiatives
2 Indian Institute of Technology Kharagpur Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project https://www.iitkgp.ac.in
3 National Digital Library of India Office, Indian Institute of Technology Kharagpur The administrative and infrastructural headquarters of the project Dr. B. Sutradhar  bsutra@ndl.gov.in
4 Project PI / Joint PI Principal Investigator and Joint Principal Investigators of the project Dr. B. Sutradhar  bsutra@ndl.gov.in
Prof. Saswat Chakrabarti  will be added soon
5 Website/Portal (Helpdesk) Queries regarding NDLI and its services support@ndl.gov.in
6 Contents and Copyright Issues Queries related to content curation and copyright issues content@ndl.gov.in
7 National Digital Library of India Club (NDLI Club) Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach clubsupport@ndl.gov.in
8 Digital Preservation Centre (DPC) Assistance with digitizing and archiving copyright-free printed books dpc@ndl.gov.in
9 IDR Setup or Support Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops idr@ndl.gov.in
I will try my best to help you...
Cite this Content
Loading...