Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Koepf, Wolfram Chiadjeu, Etienne Nana |
| Copyright Year | 2014 |
| Abstract | The study of trigonometric series has started at the beginning of the nineteenth century. Joseph Fourier made the important observation that almost every function of a closed interval can be decomposed into the sum of sine and cosine functions. This technique to develop a function into a trigonometric series was published for the first time in 1822 by Joseph Fourier. The resulting series is nowadays called Fourier series. Since Fourier’s time, many different approaches to understand the concept of Fourier series have been discovered, each of which emphasizes different aspects of the topic. Some of the more powerful and elegant approaches are based on mathematical ideas and tools that were not available at the time Fourier completed his original work. Although the original motivation was to solve the heat equation for a metal plate, it later became obvious that the same technique could be applied to a wide variety of mathematical and physical problems and has many applications in electrical engineering, vibration analysis, acoustics, optics, signal treatment, image processing, etc. Despite the importance of Fourier series, the method used until now to compute them via computer algebra systems (CAS) is essentially based on the same principle as in Fourier’s time, i.e. by the evaluation of certain integrals. Unfortunately this technique is not completely successful for many functions. Although numeric values of the Fourier coefficients might be available, symbolic values are often not accessible. Modern CAS like Maple or Mathematica can compute such integrals in many cases for a given $${n \in \mathbb{Z}}$$ . However if one is interested in the Fourier coefficients for all $${n \in \mathbb{Z}}$$ , then n is considered as a given symbolic variable and such integrals can be computed only in few cases. In this paper we introduce an algorithmic approach to compute those Fourier coefficients, involving differential equations of a particular form, and recurrence equations. This approach extrapolates the computation of the Fourier series for functions for which the computation of Fourier coefficients via the definition is out of reach for current CAS.A holonomic recurrence equation for a $_{ n }$, i.e. a recurrence equation which is linear, homogeneous and has polynomial coefficients, can be written in operator notation as L(a $_{ n }$) = 0. The operator L can be interpreted as a non-commutative polynomial via the commutator rule Nn − nN = N, N denoting the shift operator Na $_{ n }$ = a $_{ n+1}$. In the last section we show how our algorithm can be used to factorize such recurrence operators in certain cases. |
| Starting Page | 365 |
| Ending Page | 389 |
| Page Count | 25 |
| File Format | |
| ISSN | 16618270 |
| Journal | Mathematics in Computer Science |
| Volume Number | 9 |
| Issue Number | 3 |
| e-ISSN | 16618289 |
| Language | English |
| Publisher | Springer Basel |
| Publisher Date | 2014-11-14 |
| Publisher Place | Basel |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Fourier series Fourier coefficients Trigonometric holonomic function Holonomic recurrence equation Non-commutative factorization Symbolic computation Symbolic computation and algebraic computation Mathematics Computer Science |
| Content Type | Text |
| Resource Type | Article |
| Subject | Applied Mathematics Computational Theory and Mathematics Computational Mathematics |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|