Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Wang, Ai hua Hsu, P. F. Cai, Jiu ju |
| Copyright Year | 2010 |
| Abstract | The radiative properties of three different materials surfaces with one-dimensional microscale random roughness were obtained with the finite difference time domain method (FDTD) and near-to-far-field transformation. The surface height conforms to the Gaussian probability density function distribution. Various computational modeling issues that affect the accuracy of the predicted properties were discussed. The results show that, for perfect electric conductor (PEC) surfaces, as the surface roughness increases, the magnitude of the spike reduces and eventually the spike disappears, and also as the ratio of root mean square roughness to the surface correlation distance increases, the retroreflection becomes evident. The predicted values of FDTD solutions are in good agreement with the ray tracing and integral equation solutions. The overall trend of bidirectional reflection distribution function (BRDF) of PEC surfaces and silicon surfaces is the same, but the silicon’s is much less than the former’s. The BRDF difference from two polarization modes for the gold surfaces is little for smaller wavelength, but it is much larger for the longer wavelength and the FDTD simulation results agree well with the measured data. In terms of PEC surfaces, as the incident angle increases, the reflectivity becomes more specular. |
| Starting Page | 228 |
| Ending Page | 234 |
| Page Count | 7 |
| File Format | |
| ISSN | 10059784 |
| Journal | Journal of Central South University of Technology |
| Volume Number | 17 |
| Issue Number | 2 |
| e-ISSN | 19930666 |
| Language | English |
| Publisher | Central South University |
| Publisher Date | 2010-04-17 |
| Publisher Place | Heidelberg |
| Access Restriction | Subscribed |
| Subject Keyword | bidirectional reflection distribution function random rough surfaces Maxwell equations finite difference time domain method Metallic Materials Engineering |
| Content Type | Text |
| Resource Type | Article |
| Subject | Mechanics of Materials Materials Science Mechanical Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|