Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Villegas, Cesareo Swartz, Tim Martínez, Carmillo |
| Copyright Year | 2002 |
| Abstract | The posterior probabilities ofK given models when improper priors are used depend on the proportionality constants assigned to the prior densities corresponding to each of the models. It is shown that this assignment can be done using natural geometric priors in multiple regression problems if the normal distribution of the residual errors is truncated. This truncation is a realistic modification of the regression models, and since it will be made far away from the mean, it has no other effect beyond the determination of the proportionality constants, provided that the sample size is not too large. In the caseK=2, the posterior odds ratio is related to the usualF statistic in “classical” statistics. Assuming zero-one losses the optimal selection of a regression model is achieved by maximizing the posterior probability of a submodel. It is shown that the geometric criterion obtained in this way is asymptotically equivalent to Schwarz’s asymptotic Bayesian criterion, sometimes called the BIC criterion. An example of polynomial regression is used to provide numerical comparisons between the new geometric criterion, the BIC criterion and the Akaike information criterion. |
| Starting Page | 413 |
| Ending Page | 438 |
| Page Count | 26 |
| File Format | |
| ISSN | 11330686 |
| Journal | Test |
| Volume Number | 11 |
| Issue Number | 2 |
| e-ISSN | 18638260 |
| Language | English |
| Publisher | Springer-Verlag |
| Publisher Date | 2002-01-01 |
| Publisher Institution | Spanish Society of Statistics and Operations Research |
| Publisher Place | Berlin, Heidelberg |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Bayesian testing geometric Bayesian inference geometric priors, model selection probability of a model sharp hypotheses variable selection Diagnostics Statistics Statistical Theory and Methods Statistics for Business/Economics/Mathematical Finance/Insurance |
| Content Type | Text |
| Resource Type | Article |
| Subject | Statistics and Probability Statistics, Probability and Uncertainty |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|