Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Ibacache Pulgar, Germán Paula, Gilberto A. Cysneiros, Francisco José A. |
| Copyright Year | 2012 |
| Abstract | In this paper we discuss estimation and diagnostic procedures in semiparametric additive models with symmetric errors in order to permit distributions with heavier and lighter tails than the normal ones, such as Student-t, Pearson VII, power exponential, logistics I and II, and contaminated normal, among others. Such models belong to the general class of statistical models GAMLSS proposed by Rigby and Stasinopoulos (Appl. Stat. 54:507–554, 2005). A back-fitting algorithm to attain the maximum penalized likelihood estimates (MPLEs) by using natural cubic smoothing splines is presented. In particular, the score functions and Fisher information matrices for the parameters of interest are expressed in a similar notation of that used in parametric symmetric models. Sufficient conditions on the existence of the MPLEs are presented as well as some inferential results and discussions on degrees of freedom and smoothing parameter estimation. Diagnostic quantities such as leverage, standardized residual and normal curvatures of local influence under two perturbation schemes are derived. A real data set previously analyzed under normal linear models is reanalyzed under semiparametric additive models with symmetric errors. |
| Starting Page | 103 |
| Ending Page | 121 |
| Page Count | 19 |
| File Format | |
| ISSN | 11330686 |
| Journal | Test |
| Volume Number | 22 |
| Issue Number | 1 |
| e-ISSN | 18638260 |
| Language | English |
| Publisher | Springer-Verlag |
| Publisher Date | 2012-10-03 |
| Publisher Institution | Spanish Society of Statistics and Operations Research |
| Publisher Place | Berlin, Heidelberg |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Back-fitting algorithm Cubic smoothing splines Non-parametric models Robust estimates Student-t models Data analysis Nonparametric regression Diagnostics Statistics Statistical Theory and Methods Statistics for Business/Economics/Mathematical Finance/Insurance |
| Content Type | Text |
| Resource Type | Article |
| Subject | Statistics and Probability Statistics, Probability and Uncertainty |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|