Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Srivatsan, T. S. Godbole, C. Quick, T. Paramsothy, M. Gupta, M. |
| Copyright Year | 2012 |
| Abstract | In this paper, the intrinsic influence of nano-alumina particulate (Al$_{2}$O$_{3p}$) reinforcements on microstructure, microhardness, tensile properties, tensile fracture, cyclic stress-controlled fatigue, and final fracture behavior of a magnesium alloy is presented and discussed. The unreinforced magnesium alloy (AZ31) and the reinforced composite counterpart (AZ31/1.5 vol.% Al$_{2}$O$_{3}$) were manufactured by solidification processing followed by hot extrusion. The elastic modulus, yield strength, and tensile strength of the nanoparticle-reinforced magnesium alloy were noticeably higher than the unreinforced counterpart. The ductility, quantified by elongation-to-failure, of the composite was observably lower than the unreinforced monolithic counterpart (AZ31). The nanoparticle-reinforced composite revealed improved cyclic fatigue resistance over the entire range of maximum stress at both the tested load ratios. Under conditions of fully reversed loading (R = −1) both materials showed observable degradation in behavior quantified in terms of cyclic fatigue life. The conjoint influence of reinforcement, processing, intrinsic microstructural features and loading condition on final fracture behavior is presented and discussed. |
| Starting Page | 439 |
| Ending Page | 453 |
| Page Count | 15 |
| File Format | |
| ISSN | 10599495 |
| Journal | Journal of Materials Engineering and Performance |
| Volume Number | 22 |
| Issue Number | 2 |
| e-ISSN | 15441024 |
| Language | English |
| Publisher | Springer US |
| Publisher Date | 2012-07-13 |
| Publisher Place | Boston |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | aluminum oxide cyclic fatigue life fracture hardness magnesium alloy metal-matrix composite microstructure particulate reinforcement tensile response Characterization and Evaluation of Materials Tribology, Corrosion and Coatings Quality Control, Reliability, Safety and Risk Engineering Design |
| Content Type | Text |
| Resource Type | Article |
| Subject | Mechanics of Materials Materials Science Mechanical Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|