Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Liao, Ling Lim, Desmond R. Agarwal, Anuradha M. Duan, Xiaoman Lee, Kevin K. Kimerling, Lionel C. |
| Copyright Year | 2000 |
| Abstract | Signal propagation delays dominate over gate delays in the ever-shrinking ultra large scale integrated (ULSI) circuits. Consequently, silicon-based monolithic optoelectronic circuits (SMOE) with their light speed signal propagation can provide unique advantages for future generations of microprocessors. For such SMOE circuits, we need optical interconnects compatible with silicon technology. Strip waveguides consisting of polycrystalline silicon (polySi) clad with SiO$_{2}$ offer excellent optical confinement and ease of fabrication that are ideal for such interconnect applications. One major challenge with using this material system, however, is its insertion loss. In this paper we provide techniques for minimizing optical transmission losses in polySi strip waveguides. Our previous work using polySi strip waveguides, showed an optical transmission loss of 15 dB/cm at λ=1.55 µm, which is a communication wavelength of choice in optical fibers because it represents an absorption minimum. Similar measurements in crystalline silicon strip waveguides$^{1}$ yielded transmission losses of less than 1 dB/cm. Hitherto, in decreasing loss from 77 dB/cm to 15 dB/cm, we had minimized loss from surface scattering by improving the film surface morphology, and decreased bulk absorption with hydrogen passivation. In this paper we report a further reduction in the residual bulk loss from 15 dB/cm to 9 dB/cm. By experimenting with different waveguide core dimensions, we find that the contribution of bulk loss towards net transmission loss decreases with waveguide core thickness. Additionally, high temperature treatment provides strain relief in the polySi, decreasing transmission loss. Annealing in an oxygen ambient is not recommended because it always increases transmission loss. Hydrogen passivation improves transmission, attributable to passivation of light-absorbing dangling bond defect sites present at polySi grain boundaries. Together, these methods have resulted in the lowest measured loss value of 9 dB/cm at λ=1.55 µm. Since integrated SiGe and Ge photodetectors are more efficient at shorter wavelengths like λ=1.32 µm, transmission loss is also measured at λ=1.32 µm. Losses at the two wavelengths (1.32 µm and 1.55 µm) are similar when defects and stress in the waveguides are minimized. |
| Starting Page | 1380 |
| Ending Page | 1386 |
| Page Count | 7 |
| File Format | |
| ISSN | 03615235 |
| Journal | Journal of Electronic Materials |
| Volume Number | 29 |
| Issue Number | 12 |
| e-ISSN | 1543186X |
| Language | English |
| Publisher | Springer-Verlag |
| Publisher Date | 2000-01-01 |
| Publisher Place | New York |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | PolySi strip waveguides optical transmission loss Optical and Electronic Materials Characterization and Evaluation of Materials Electronics and Microelectronics, Instrumentation Solid State Physics and Spectroscopy |
| Content Type | Text |
| Resource Type | Article |
| Subject | Materials Chemistry Electronic, Optical and Magnetic Materials Condensed Matter Physics Electrical and Electronic Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|