Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Job, H. M. Keating, D. Evans, A. L. Parks, S. |
| Copyright Year | 1999 |
| Abstract | Classical electromagnetic theory is used to examine the topographical variation in electrical potentials over the corneal surface resulting from specific retinal stimuli. Results from a three-dimensional mathematical model show that over 97% of calculated electromagnetic field potentials lie within 3% of previous analytical model data for an axially symmetric case. Maps of corneal potentials are produced that are shown to be characteristic of specific retinal stimuli and location. The maximum variation in corneal potential for a full field global stimulus is found to be approximately 1%. This is considered encouraging, as current electrophysiology techniques measure ocular potentials from a single corneal or scleral site, the position of which is often difficult to localise and reproduce. The model is used to simulate both central and peripheral stimuli and scotoma conditions. A 20° central scotoma simulation shows an overall reduction in central corneal potential of only 3%, whereas peripheral stimuli are found to cause up to 10% variations in this potential. There is therefore a possibility that a single recording site for multifocal retinal stimulation is not ideal. These data may be used to suggest more appropriate electrode recording positions for maximum signal recovery, not least in optimising signal detection for multi-focal electroretinography stimulation. |
| Starting Page | 710 |
| Ending Page | 719 |
| Page Count | 10 |
| File Format | |
| ISSN | 01400118 |
| Journal | Medical and Biological Engineering and Computing |
| Volume Number | 37 |
| Issue Number | 6 |
| e-ISSN | 17410444 |
| Language | English |
| Publisher | Springer-Verlag |
| Publisher Date | 1999-01-01 |
| Publisher Place | Berlin, Heidelberg |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Mathematical modelling Ocular electrophysiology Multifocal ERG Biomedical Engineering Human Physiology Imaging Radiology Computer Applications |
| Content Type | Text |
| Resource Type | Article |
| Subject | Biomedical Engineering Computer Science Applications |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|