Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Gliko, A. O. Molodenskii, S. M. |
| Copyright Year | 2015 |
| Abstract | In the first part of the paper, we obtained the analytical relationships determining the changes in the topography of the geoid and the component of horizontal displacements of the Earth’s surface, which appear under the action of the point heat source located at the arbitrary depth in the mantle. For the real model of radially heterogeneous Earth with hydrostatic distribution of the initial stresses, the solution of the problem on thermoelastic deformations is represented in the form of spherical expansions with the coefficients determined by the corresponding coefficients of spherical expansions of the product of temperature, bulk modulus, and bulk compression modulus with the same indices. As mentioned in part I, the variation in the external potential is contributed by three effects: the reduction in density in the heated area, the increase in density in the external (not heated) area due to its elastic compression, and the attraction of the near-surface simple layer that is formed due to the change in the shape of the external surface under its elastic deformation. The total effect of these three factors is represented in the form of a spherical series expansion. It is shown that in the limiting case of the high-order spherical functions, the ratios of the radial displacements of the geoid to the radial displacements of the external surface tend to zero. Since at high orders of the spherical functions, the effects of sphericity are negligible, this statement means that at any thermoelastic deformations of the uniform elastic halfspace, the three effects listed above exactly compensate each other. Due to this compensation, the question of the interpretation of the observed relationships between the coefficients of series expansions of the temperature and geoid can only be solved after the detailed numerical calculations, since the arbitrarily small radial inhomogeneities of the medium (e.g., those associated with the depth changes of its rheological properties) are not only capable of significantly changing the magnitude of the radial displacements of the geoid but also altering their sign. Moreover, even in the uniform Earth’s model, the effects of sphericity of its external surface and self-gravitation can also provide a noticeable contribution, which determines the signs of the coefficients in the expansion of the geoid’s shape in the lower-order spherical functions. In order to separate these effects, below we present the results of the numerical calculations of the total effects of thermoelastic deformations for the two simplest models of spherical Earth without and with self-gravitation with constant density and complex-valued shear moduli and for the real Earth PREM model (which describes the depth distributions of density and elastic moduli for the high-frequency oscillations disregarding the rheology of the medium) and the modern models of the mantle rheology. Based on the calculations, we suggest the simplest interpretation of the present-day data on the relationship between the coefficients of spherical expansion of temperature, velocities of seismic body waves, the topography of the Earth’s surface and geoid, and the data on the correlation between the lower-order coefficients in the expansions of the geoid and the corresponding terms of the expansions of horizontal inhomogeneities in seismic velocities. The suggested interpretation includes the estimates of the sign and magnitude for the ratios between the first coefficients of spherical expansions of seismic velocities, topography, and geoid. The presence of this correlation and the relationship between the signs and absolute values of these coefficients suggests that both the long-period oscillations of the geoid and the long-period variations in the velocities of seismic body waves are largely caused by thermoelastic deformations. |
| Starting Page | 8 |
| Ending Page | 15 |
| Page Count | 8 |
| File Format | |
| ISSN | 10693513 |
| Journal | Izvestiya, Physics of the Solid Earth |
| Volume Number | 51 |
| Issue Number | 1 |
| e-ISSN | 15556506 |
| Language | English |
| Publisher | Pleiades Publishing |
| Publisher Date | 2015-01-07 |
| Publisher Place | Moscow |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Geophysics/Geodesy |
| Content Type | Text |
| Resource Type | Article |
| Subject | Earth and Planetary Sciences Environmental Science |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|