Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Polyachenko, V. L. Polyachenko, E. V. Shukhman, I. G. |
| Copyright Year | 2008 |
| Abstract | We develop new approaches to the numerical simulations of slowly evolving stellar systems with characteristic times of the order of the precession period for a typical orbit. This period is assumed to be long compared to the characteristic oscillation periods of individual stars in their orbits. For such processes, the standard numerical simulations using various N-body methods become inadequate, since the bulk of the computational time is spent on the repeated calculations of almost invariable orbits. We suggest a new N-orbit approach (called so by analogy and by contrast with N-body methods) that takes into account the specifics of the problems under consideration, in which whole orbits take the place of individual stars in N-body methods. Accordingly, the stellar system is represented by a set of N orbits the changes in the spatial orientation and shape of which lead to a slow evolution of the system. We derive the equations governing the nonlinear dynamics of orbits separately for 2D (disk) and 3D systems. These equations have the form of Hamiltonian equations for canonically conjugate pairs of variables. In the 2D case, one pair of such equations will suffice: for the angular momentum L and for the angle of direction to the apocenter Ψ. In the 3D case, there are two such pairs. The first pair of equations is for the modulus of the angular momentum L and the angle of direction to the apocenter in the orbital plane Ψ, while the second pair is for L $_{z}$ (the component of the angular momentum vector L along the z axis) and the orientation angle of the line of nodes W. Together with the energy E, which is an adiabatic invariant, these two (or four) parameters completely define the orbit (in the 2D and 3D cases, respectively). The evolution of the system is traced by solving these equations within the framework of the suggested N-orbit approach. We have in mind two versions of this approach. In the first version, a separate orbit corresponds to each star along which the mass of this star is “smeared.” In this version, the number of orbits N $_{orb}$ is equal to the total number of stars N in the system under consideration. This version is a complete analogue of the N-body approach, except that the motion of each star is averaged over the orbit and we consider not the behavior of the star but the behavior of its orbit. In the second version, all stars from one small cell in the phase space of orbit parameters correspond to the orbit. In fact, this version of the N-orbit approach represents the method of solving the collisionless Boltzmann kinetic equation for the distribution function of orbit parameters. The number of orbits N $_{orb}$ in this approach is equal to the chosen number of cells. There exist two types of objects to the description of which N-orbit methods can be applied. First, these include the central regions of galaxies containing no large point masses. The stars in these regions move in symmetric (about the center) elliptical orbits that slowly precess due to the small deviation of the self-consistent potential from an exactly quadratic form (when all orbits are closed, so that the precession velocity is exactly equal to zero). Second, these include the star clusters around massive black holes at the centers of these clusters. The orbit of a star revolving around a central mass is a closed Keplerian ellipse and, consequently, has no precession. Slow precession appears when the relatively weak (compared to the attraction of the massive black hole) self-consistent gravitational field produced by cluster stars is taken into account. In this paper, to be specific, we will mainly deal precisely with the latter, near-Keplerian systems. |
| Starting Page | 163 |
| Ending Page | 178 |
| Page Count | 16 |
| File Format | |
| ISSN | 10637737 |
| Journal | Astronomy Letters |
| Volume Number | 34 |
| Issue Number | 3 |
| e-ISSN | 15626873 |
| Language | English |
| Publisher | SP MAIK Nauka/Interperiodica |
| Publisher Date | 2011-03-11 |
| Publisher Place | Dordrecht |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | stellar systems stars clusters and associations stellar dynamics simulations Astronomy, Observations and Techniques Astrophysics and Astroparticles |
| Content Type | Text |
| Resource Type | Article |
| Subject | Astronomy and Astrophysics Space and Planetary Science |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|