Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Pei, Jie Chen, Jun Fazle, Hussain She, ZhenSu |
| Copyright Year | 2013 |
| Abstract | Classical Mach-number (M) scaling in compressible wall turbulence was suggested by van Driest (Van Driest E R. Turbulent boundary layers in compressible fluids. J Aerodynamics Science, 1951, 18(3): 145–160) and Huang et al. (Huang P G, Coleman G N, Bradshaw P. Compressible turbulent channel flows: DNS results and modeling. J Fluid Mech, 1995, 305: 185–218). Using a concept of velocity-vorticity correlation structure (VVCS), defined by high correlation regions in a field of two-point cross-correlation coefficient between a velocity and a vorticity component, we have discovered a limiting VVCS as the closest streamwise vortex structure to the wall, which provides a concrete Morkovin scaling summarizing all compressibility effects. Specifically, when the height and mean velocity of the limiting VVCS are used as the units for the length scale and the velocity, all geometrical measures in the spanwise and normal directions, as well as the mean velocity and fluctuation (r.m.s) profiles become M-independent. The results are validated by direct numerical simulations (DNS) of compressible channel flows with M up to 3. Furthermore, a quantitative model is found for the M-scaling in terms of the wall density, which is also validated by the DNS data. These findings yield a geometrical interpretation of the semi-local transformation (Huang et al., 1995), and a conclusion that the location and the thermodynamic properties associated with the limiting VVCS determine the M-effects on supersonic wall-bounded flows. |
| Starting Page | 1770 |
| Ending Page | 1781 |
| Page Count | 12 |
| File Format | |
| ISSN | 16747348 |
| Journal | Science in China Series G |
| Volume Number | 56 |
| Issue Number | 9 |
| e-ISSN | 18691927 |
| Language | English |
| Publisher | Springer Berlin Heidelberg |
| Publisher Date | 2013-06-12 |
| Publisher Place | Berlin, Heidelberg |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | compressible channel flow coherent structures correlation structures Morkovin’s hypothesis Physics Classical Continuum Physics Astronomy, Observations and Techniques |
| Content Type | Text |
| Resource Type | Article |
| Subject | Physics and Astronomy |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|