Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Zhu, ZhiWei Zhou, XiaoQin Wang, RongQi Liu, Qiang |
| Copyright Year | 2014 |
| Abstract | Various types of flexure hinges have been introduced and implemented in a variety of fields due to their superior performances. The Castigliano’s second theorem, the Euler-Bernoulli beam theory based direct integration method and the unit-load method have been employed to analytically describe the elastic behavior of flexure hinges. However, all these methods require prior-knowledge of the beam theory and need to execute laborious integration operations for each term of the compliance matrix, thus highly decreasing the modeling efficiency and blocking practical applications of the modeling methods. In this paper, a novel finite beam based matrix modeling (FBMM) method is proposed to numerically obtain compliance matrices of flexure hinges with various shapes. The main concept of the method is to treat flexure hinges as serial connections of finite micro-beams, and the shearing and torsion effects of the hinges are especially considered to enhance the modeling accuracy. By means of matrix calculations, complete compliance matrices of flexure hinges can be derived effectively in one calculation process. A large number of numerical calculations are conducted for various types of flexure hinges with different shapes, and the results are compared with the ones obtained by conventional modeling methods. It demonstrates that the proposed modeling method is not only efficient but also accurate, and it is a more universal and more robust tool for describing elastic behavior of flexure hinges. |
| Starting Page | 56 |
| Ending Page | 63 |
| Page Count | 8 |
| File Format | |
| ISSN | 16747321 |
| Journal | Science in China Series E: Technological Sciences |
| Volume Number | 58 |
| Issue Number | 1 |
| e-ISSN | 18691900 |
| Language | English |
| Publisher | Science China Press |
| Publisher Date | 2014-10-27 |
| Publisher Place | Heidelberg |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | flexure hinge compliance matrix finite beam based matrix modeling modeling accuracy Engineering |
| Content Type | Text |
| Resource Type | Article |
| Subject | Engineering Materials Science |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|