Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Guo, TieXin |
| Copyright Year | 2008 |
| Abstract | Let (Ω,A,μ) be a probability space, K the scalar field R of real numbers or C of complex numbers,and (S,X) a random normed space over K with base (ω,A,μ). Denote the support of (S,X) by E, namely E is the essential supremum of the set {A ∈ A: there exists an element p in S such that X $_{ p }$(ω) > 0 for almost all ω in A}. In this paper, Banach-Alaoglu theorem in a random normed space is first established as follows: The random closed unit ball S $^{*}$(1) = {f ∈ S $^{*}$: X $^{*}$ $_{ f }$ ⩽ 1} of the random conjugate space (S $^{*}$,X $^{*}$) of (S,X) is compact under the random weak star topology on (S $^{*}$,X $^{*}$) iff E∩A=: {E∩A | A ∈ A} is essentially purely μ-atomic (namely, there exists a disjoint family {A $_{ n }$: n ∈ N} of at most countably many μ-atoms from E ∩ A such that E = ∪ n=1 ∞ A $_{ n }$ and for each element F in E ∩ A, there is an H in the σ-algebra generated by {A $_{ n }$: n ∈ N} satisfying μ(FΔH) = 0), whose proof forces us to provide a key topological skill, and thus is much more involved than the corresponding classical case. Further, Banach-Bourbaki-Kakutani-Šmulian (briefly, BBKS) theorem in a complete random normed module is established as follows: If (S,X) is a complete random normed module, then the random closed unit ball S(1) = {p ∈ S: X $_{ p }$ ⩽ 1} of (S,X) is compact under the random weak topology on (S,X) iff both (S,X) is random reflexive and E ∩ A is essentially purely μ-atomic. Our recent work shows that the famous classical James theorem still holds for an arbitrary complete random normed module, namely a complete random normed module is random reflexive iff the random norm of an arbitrary almost surely bounded random linear functional on it is attainable on its random closed unit ball, but this paper shows that the classical Banach-Alaoglu theorem and BBKS theorem do not hold universally for complete random normed modules unless they possess extremely simple stratification structure, namely their supports are essentially purely μ-atomic. Combining the James theorem and BBKS theorem in complete random normed modules leads directly to an interesting phenomenum: there exist many famous classical propositions that are mutually equivalent in the case of Banach spaces, some of which remain to be mutually equivalent in the context of arbitrary complete random normed modules, whereas the other of which are no longer equivalent to another in the context of arbitrary complete random normed modules unless the random normed modules in question possess extremely simple stratification structure. Such a phenomenum is, for the first time, discovered in the course of the development of random metric theory. |
| Starting Page | 1651 |
| Ending Page | 1663 |
| Page Count | 13 |
| File Format | |
| ISSN | 10069283 |
| Journal | Science in China Series A: Mathematics |
| Volume Number | 51 |
| Issue Number | 9 |
| e-ISSN | 18622763 |
| Language | English |
| Publisher | SP Science in China Press |
| Publisher Date | 2008-08-07 |
| Publisher Place | Heidelberg |
| Access Restriction | Subscribed |
| Subject Keyword | random normed module random reflexivity random weak star compactness random weak compactness stratification structure Not locally convex spaces Normed modules and Banach modules, topological modules Duality and reflexivity Compact (locally compact) metric spaces Probabilistic metric spaces Applications of Mathematics |
| Content Type | Text |
| Resource Type | Article |
| Subject | Mathematics |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|