Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Schuwirth, Nele Hofmann, Thilo |
| Copyright Year | 2006 |
| Abstract | The suitability of leaching tests for the assessment of soil water concentrations is a controversial issue. The aim of this paper is to review and critically discuss the applicability and comparability of leaching tests in the scope of groundwater risk assessment of inorganic contamination and to discuss soil water sampling methods as alternative. First, the theoretical background of leaching tests and the main leaching controlling parameters (pH, redox, ionic strength, reaction kinetics, surface, and speciation) are discussed. Experience with common batch leaching tests (the German DEV S4 test (S4), saturation soil extraction (SSE), ammonia nitrate extraction (ANE), and pHstatic tests) are compiled and an emphasis is set on the comparability of the results of batch leaching tests. Additionally, the comparability between batch tests and column tests is discussed and comparison studies are reviewed. As a feasible alternative, soil water sampling strategies (the suction cup method and centrifugation) are outlined. For an expedient application of leaching tests, it is crucial to identify the main release controlling parameters, which can be both site and contaminant specific. Possible controlling parameters are, for example, pH, redox conditions, specific surface area of the investigated material, liquid to solid-ratio, ionic strength, cation exchange capacity, DOC, speciation, temperature and contact time. It depends on the release process of the contaminant in the investigated material, which parameters are influencing the release predominantly. The following questions have to be answered: Is the release process availability controlled or solubility controlled and are there kinetic limitations? Suction cups are particularly useful for long-term monitoring. In contrast, centrifugation is a fast and simple method to sample soil water also at larger and heterogeneous sites. SSE or similar batch tests for coarse material are suitable if the soil water cannot be investigated directly. Contaminant concentrations of the SSE fit best to contaminant concentrations in soil water compared to other leaching tests. Concentrations measured with S4 tests are usually significantly lower than in real soil water due to the unrealistically high liquid to solid-ratio. The ANE is used for the evaluation of plant uptake. It does not represent realistic soil water concentrations. Cationic contaminants are usually significantly higher concentrated in ANE eluates. pHstatic tests provide an evaluation of the pH dependency of contaminant release and buffer capacity of the investigated material. It provides indications to release processes and often explains deviations in the results of different leaching tests. Previous practical experience and fundamental research studies show that a conversion of leaching test results, as is proposed by the (already withdrawn) DIN V 19735, is impossible. Correlations of results from different methods, regarding different kinds of materials and different sites, are not significant. This is due to different leaching processes. . For short-term risk assessment, soil water should be sampled and investigated directly by suction cups (for monitoring purposes) or centrifugation (for inventory purposes). If this is not possible, the SSE or analogous batch tests for coarse material with a narrow L/S ratio should be applied. A suggestion could be a modified saturation soil extraction where a soil column is saturated and the eluate is removed by suction at the bottom of the column. With this method, an unsaturated column test could follow in the same vessel. In order to assess the long-term leaching behavior, total contents of the investigated material have to be taken into account additionally. Furthermore, it is essential to understand the dominant physical and chemical release processes and to figure out the main leaching controlling parameters. Therefore, the following methods are recommended: pHstatic tests at different pH values provide an insight to leaching processes and possible future leaching scenarios. Batch tests similar to the S4 procedure with different L/S ratios are useful to find out whether the release process is solubility or availability controlled. Additionally, this method allows the determination of maximum solubility and maximum availability, respectively. Furthermore, unsaturated column tests provide an insight into leaching processes and releasable amounts even though they require great experimental effort. Other leaching tests like S4 or ANE are not suitable for the estimation of soil water concentrations. |
| Starting Page | 102 |
| Ending Page | 112 |
| Page Count | 11 |
| File Format | |
| ISSN | 14390108 |
| Journal | Journal of Soils and Sediments |
| Volume Number | 6 |
| Issue Number | 2 |
| e-ISSN | 16147480 |
| Language | English |
| Publisher | Ecomed |
| Publisher Date | 2005-10-24 |
| Publisher Place | Landsberg |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Soil Science & Conservation Environment Environmental Physics |
| Content Type | Text |
| Resource Type | Article |
| Subject | Stratigraphy Earth-Surface Processes |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|