Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Stichthe, Heinz Calma, Wolfgang Arevalo, Eduardo Keller, Arne Thöming, Jorg |
| Copyright Year | 2005 |
| Abstract | Dedicated to Prof. Dr. Ulrich Förstner on his 65th birthday Sediments in harbours and nearby shipyards demonstrate widespread contamination with tributyltin (TBT). Therefore, reuse and relocation of dredged material from these locations are prohibited. Even if the International Marine Organization (IMO) convention concerning TBT-based paints is ratified (Champ, 2003) the TBT problem in sediments will continue to remain for many years due to the persistence of TBT. An electrochemical process has been developed to treat polluted sediments. Dredged materials with high and low TBT-contents were studied on a technical and a pilot scale. The treatment process was assessed by chemical analysis and a biotest battery. Additionally, an economic analysis was performed to check the economic feasibility of the process to treat dredged material from two different locations at different operating conditions. Furthermore an up-scaling estimation was performed to evaluate treatment costs at a larger scale, i.e. for a plant having a capacity of 720 000 t/a. Butyltin species and polycyclic aromatic hydrocarbons (PAH) were decomposed due to electrochemically-induced oxidation, while the treatment did not alter heavy metal and PCB concentrations. The bacteria luminescence test indicated a reduced toxicity after the electrochemical treatment, while the algae growth inhibition test and bacteria contact test did not confirm these results. Based on a small consumer price of 0.12/kWh, treating the high-contaminated sediment in the pilot plant would cost 21/m$^{3}$ and 31/m$^{3}$ for the low contaminated sediment, respectively. Assuming an industrial consumer price of 0.06/kWh for electricity in an up-scaled process with a capacity of 720 000t/a, the total treatment costs for the low contaminated sediment would be 13/m$^{3}$. The results of treating dredged material from Bremerhaven and the fine-grained fraction from the METHA plant show that the effectiveness of the process performance is more related to the binding form and sediment composition than to the initial concentration of TBT. The electrochemically treated material complies with chemical criteria for relocation of dredged material, but post-treatment, e.g. washing and/or reduction of remaining oxidants with Fe-II-salts, is needed to fulfil ecotoxicological criteria for relocation. Economic investigations have shown that the electrochemical treatment might be a technical option to treat TBT contaminated, dredged material. However, the technique is not fully developed and cannot remove all chemicals of concern, e.g. heavy metals. The decision as to whether this technique can be applied is site-specific and should be taken based on the case-by-case approach. Since biotests integrate the effects of all contaminants present in a sample, process-accompanying evaluation procedures need additional assessment methods such as TIE (toxicity identification evaluation) as a second tier following ecotoxicological tests, in which the reasons for the effects are identified. For reasons of sustainability, a much more effect-oriented and long-term cost effective approach should be applied in future to avoid the release of harmful substances into the environment. Life cycle assessment should be carried out to identify and quantify impacts of sediment treatment processes in order to take into account both the distant effects of local actions and local effects of distant actions. |
| Starting Page | 21 |
| Ending Page | 29 |
| Page Count | 9 |
| File Format | |
| ISSN | 14390108 |
| Journal | Journal of Soils and Sediments |
| Volume Number | 5 |
| Issue Number | 1 |
| e-ISSN | 16147480 |
| Language | English |
| Publisher | Ecomed |
| Publisher Date | 2005-01-25 |
| Publisher Place | Landsberg |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Environment Environmental Physics Soil Science & Conservation |
| Content Type | Text |
| Resource Type | Article |
| Subject | Stratigraphy Earth-Surface Processes |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|