Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Serikov, Leonid V. Tropina, Elena A. Shiyan, Liudmila N. Frimmel, Fritz H. Metreveli, George Delay, Markus |
| Copyright Year | 2009 |
| Abstract | The groundwaters of Western Siberia contain high concentrations of iron, manganese, silicon, ammonium, and, in several cases, hydrogen sulfide, carbonic acids, and dissolved organic substances. Generally, the groundwaters of Western Siberia can be divided into two major types: one type with a relatively low concentration of humic substances and high hardness (water of A type) and a second type with a relatively low hardness and high concentration of humic substances (water of B type). For drinking water production, the waters of A type are mostly treated in the classical way by aeration followed by sand bed filtration. The waters of B type often show problems when treated for iron removal. A part of iron practically does not form the flocs or particles suitable for filtration or sedimentation. The aim of this work was to determine the oxidizability of Fe(II), to characterize the iron colloids, and to investigate the complexation of the iron ions with humic substances and the coagulation of the iron colloids in the presence of dissolved organic matter.Water samples of the A and B types were taken from bore holes in Western Siberia (A type: in Tomsk and Tomsk region, B type: in Beliy Yar and Kargasok). Depth of sampling was about 200 m below surface. The oxidation of the groundwater samples by air oxygen and ozone was done in a bubble reactor consisting of a glass cylinder with a gas-inlet tube. To produce ozone, a compact ozone generator developed by Tomsk Polytechnic University was used. For the characterization of the colloids in the water of B type, the particle size distribution and the zeta potential were measured. To investigate the formation of complexes between iron and humic substances in the water of B type, size exclusion chromatography was used. The coagulation behavior of iron in the presence of dissolved organic substances was investigated at different pH values. The agglomerates were detected by measuring the optical density using a UV-Vis spectrometer.Ozone showed, as expected, a faster oxidation of Fe(II) than air oxygen. The rate constants for Fe(II) oxidation were not much different for the waters of A and B types when the same oxidation process was used. However, the removal of iron after oxidation and filtration was higher in the water of A type than in the water of B type. No evidence for the formation of soluble complexes between iron and humic substances were found. In the water of A type, the coagulation process started at pH = 4.5 and accelerated with increasing pH value. In the water of B type, the coagulation of colloids occurred only at pH = 11 and higher.The oxidation experiments indicated no major effect of dissolved organic carbon concentration on the kinetics of Fe(II) oxidation. In contrast to this, the humic substances showed a significant influence on the aggregation behavior of the iron hydroxide colloids. Due to the sorption of humic substances on the iron hydroxide colloids, they were highly stable in the pH range between 4.5 and 10. The particle size measurements confirmed the presence of small colloids in the water of B type. In contrast to this, the iron hydroxide colloids aggregated rapidly at pH = 11.The results showed a great influence of humic substances on the iron removal from groundwaters of Western Siberia with high organic content. The sorption of humic substances on the iron colloids does not obviously allow their coagulation and formation of flocs suitable for filtration or sedimentation.By treatment of groundwaters containing high amounts of humic substances, some problems with the removal of iron are likely to occur. To increase the effectiveness of iron removal, the surface coating and pH-dependent charge effects should be taken into account by the selection and optimization of water treatment processes. The iron colloids coated by humic substances should be separated from the water phase by membrane filtration or by flocculation followed by filtration through different solid materials. |
| Starting Page | 103 |
| Ending Page | 110 |
| Page Count | 8 |
| File Format | |
| ISSN | 14390108 |
| Journal | Journal of Soils and Sediments |
| Volume Number | 9 |
| Issue Number | 2 |
| e-ISSN | 16147480 |
| Language | English |
| Publisher | Springer-Verlag |
| Publisher Date | 2009-03-11 |
| Publisher Place | Berlin, Heidelberg |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Aggregation Colloids Groundwater Humic substances Iron oxidation Iron removal Western Siberia Zeta potential Environmental Physics Environment Soil Science & Conservation |
| Content Type | Text |
| Resource Type | Article |
| Subject | Stratigraphy Earth-Surface Processes |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|