Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Provoost, Jeroen Bosman, Annelies Reijnders, Lucas Bronders, Jan Touchant, Kaatje Swartjes, Frank |
| Copyright Year | 2009 |
| Abstract | Vapours of volatile organic compounds (VOCs) emanating from contaminated soils may move through the unsaturated zone to the subsurface. VOC in the subsurface can be transported to the indoor air by convective air movement through openings in the foundation and basement. Once they have entered the building, they may cause adverse human health effects. Screening-level algorithms have been developed, which predict indoor air concentrations as a result of soil (vadose zone) contamination. The present study evaluates seven currently used screening-level algorithms, predicting vapour intrusion into buildings as a result of vadose zone contamination, regarding the accuracy of their predictions and their usefulness for screening purpose. Screening aims at identifying contaminated soils that should be further investigated as to the need of remediation and/or the presence of an intolerable human health risk. To be useful in this respect, screening-level algorithms should be sufficiently conservative so that they produce very few false-negative predictions but they should not be overly conservative because they might have insufficient discriminatory power.For this purpose, a comparison is made between observed and predicted soil air and indoor air concentrations from seven reasonably well-documented sites, where the vadose zone was contaminated with aromatic or chlorinated VOCs. The seven screening-level algorithms considered were: Vlier–Humaan (Be), Johnson and Ettinger model (USA), VolaSoil (NL), CSoil (NL), Risc (UK) and the dilution factor models from Norway and Sweden. Calculations are presented in two scatter plots (soil air and indoor air), each containing the predictions versus the observations. Differences between predicted and observed VOCs concentrations were evaluated on the basis of three statistical criteria to establish their accurateness and the usefulness for screening purposes. Results from the applied criteria are presented in a table and figures.It was found that the screening-level algorithms investigated tended to overestimate soil air concentrations more than indoor air concentrations. Differences between predictions and observations were up to three orders of magnitude. The algorithms with the highest accuracy for predicting the soil air concentration are in ascending order the Johnson and Ettinger model (JEM), Vlier–Humaan and VolaSoil algorithms. For the indoor air, it is concluded that all algorithms have a tendency to overestimate the predicted indoor air concentrations, except for the JEM and Vlier–Humaan algorithms, which produced frequent underestimations.Several earlier studies have investigated the accuracy of some of the screening-level algorithms for vapour intrusion and the results presented in the present study agree with the findings. However, the present study presents the accuracy of vapour intrusion algorithms via three statistical criteria that allow their ranking. The present study also determines the suitability of screening-level algorithms as screening tool. It is found that algorithms may rank differently as to accuracy and suitability as a screening tool.The algorithms with the highest accuracy for predicting the indoor air concentration are the JEM and Vlier–Humaan algorithms. The most suitable algorithms to serve for screening purposes are CSoil, VolaSoil and Risc, since they are sufficiently conservative, have fewer false-negative predictions and still have sufficient discriminatory power.Given the over-predictions and under-predictions of the algorithms considered, a combination of modelling and measurements will often be required to produce multiple lines of evidence for the presence of an intolerable human health risk or the need for remedial actions at a site. Integrated programmes of modelling and field observations can reduce the uncertainty of predicted soil air and indoor air concentrations, and a tiered approach is presented in this study. |
| Starting Page | 473 |
| Ending Page | 483 |
| Page Count | 11 |
| File Format | |
| ISSN | 14390108 |
| Journal | Journal of Soils and Sediments |
| Volume Number | 10 |
| Issue Number | 3 |
| e-ISSN | 16147480 |
| Language | English |
| Publisher | Springer-Verlag |
| Publisher Date | 2009-08-20 |
| Publisher Place | Berlin, Heidelberg |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Accuracy Algorithm CSoil DF Norway DF Sweden Indoor air Intrusion JEM Model RISC Soil air Soil contamination Vadose zone Vapour Vlier–Humaan VOC VolaSoil Environmental Physics Environment Soil Science & Conservation |
| Content Type | Text |
| Resource Type | Article |
| Subject | Stratigraphy Earth-Surface Processes |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|