Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Thabrew, Lanka Lloyd, Shann Cypcar, Christopher C. Hamilton, John D. Ries, Robert |
| Copyright Year | 2008 |
| Abstract | Industrial and institutional (I and I) floor maintenance activities require regular use of chemical products and equipment. Different floor care systems require different maintenance products, activities, and frequencies which consume different levels of energy and material for product manufacturing, maintenance, and application. Therefore, selecting between floor maintenance products and programs requires comprehensive analysis of the entire floor maintenance system as well as any site-specific factors that can influence human and environmental health. In this paper, a probabilistic model for comparing the environmental life cycle implications of I and I floor maintenance programs is presented. The primary interest is in comparing programs that use different water-based acrylic floor finishes and in particular, programs using zinc-containing floor finishes compared to zinc-free floor finish systems. Zinc, used in some acrylic polymers as a polymer cross-linking agent, is regulated in some communities to minimize its impact on the aquatic environment.The life cycle assessment (LCA) model was developed in compliance with the ISO 14040 series of standards [1]. Furthermore, uncertain input variables were defined as probabilistic distributions and Latin Hypercube Sampling was used to propagate uncertainty through the model. The scope of the study includes the full life cycle of the materials, supplies, equipment, and activities associated with performing floor maintenance. The effects of maintaining higher lighting and temperature levels while performing floor maintenance are estimated using building energy system analysis. The life cycle inventory (LCI) element of the LCA was developed using product-specific data, publicly available data, and established life cycle inventory databases. Life cycle impact assessment was conducted using the Eco-Indicator 99 [2] and Impact 2002+ [3,4] impact assessment methods.Two floor maintenance scenarios were developed and analyzed to compare the environmental impact of programs using zinc-containing and zinc-free floor finishes. The results discussed herein are presented for a hypothetical retail store located in the Midwest region of the United States. Given the scenarios examined, zinc-free floor finish systems reduced the release of zinc ions to the environment, but the overall impact in all life cycle impact assessment (LCIA) categories was greater for the zincfree floor finish system primarily due to the increased frequency of maintenance.The impacts associated with operating the facility were orders of magnitude higher than those associated with producing or using floor care products, supplies, or equipment. This leads to the conclusion that for critical impacts, floor care product development should focus research efforts on innovative products that reduce application and maintenance time if significant reduction in these impacts is sought.Adopting a stochastic modeling approach enabled incorporation of parameter uncertainty and analysis of uncertainty in model results. In the scenario shown here, the magnitude of overall impact in all LCIA categories was greater for the zinc-free floor finish system than the zinc-containing floor finish system.Use of decision modeling software provided flexibility for developing scenarios and assessing floor maintenance programs under various operational and site-specific conditions. |
| Starting Page | 65 |
| Ending Page | 74 |
| Page Count | 10 |
| File Format | |
| ISSN | 09483349 |
| Journal | The International Journal of Life Cycle Assessment |
| Volume Number | 13 |
| Issue Number | 1 |
| e-ISSN | 16147502 |
| Language | English |
| Publisher | Ecomed |
| Publisher Date | 2007-04-26 |
| Publisher Place | Landsberg |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Facility operations floor maintenance parameter uncertainty water-based acrylic floor zinc-free floor finish Environment Environmental Economics |
| Content Type | Text |
| Resource Type | Article |
| Subject | Environmental Science |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|