WebSite Logo
  • Content
  • Similar Resources
  • Metadata
  • Cite This
  • Log-in
  • Fullscreen
Log-in
Do not have an account? Register Now
Forgot your password? Account recovery
  1. The International Journal of Life Cycle Assessment
  2. The International Journal of Life Cycle Assessment : Volume 14
  3. The International Journal of Life Cycle Assessment : Volume 14, Issue 5, July 2009
  4. Life cycle assessment of Australian automotive door skins
Loading...

Please wait, while we are loading the content...

The International Journal of Life Cycle Assessment : Volume 22
The International Journal of Life Cycle Assessment : Volume 21
The International Journal of Life Cycle Assessment : Volume 20
The International Journal of Life Cycle Assessment : Volume 19
The International Journal of Life Cycle Assessment : Volume 18
The International Journal of Life Cycle Assessment : Volume 17
The International Journal of Life Cycle Assessment : Volume 16
The International Journal of Life Cycle Assessment : Volume 15
The International Journal of Life Cycle Assessment : Volume 14
The International Journal of Life Cycle Assessment : Volume 14, Issue 7, November 2009
The International Journal of Life Cycle Assessment : Volume 14, Issue 6, September 2009
The International Journal of Life Cycle Assessment : Volume 14, Issue 5, July 2009
Life cycle thinking in Polish official documents and research : The determination of discount rate for green public procurement
LCM 2009—the global challenge of managing life cycles
The role of seasonality in lettuce consumption: a case study of environmental and social aspects
Enzymes for pharmaceutical applications—a cradle-to-gate life cycle assessment
Environmental impact of two aerobic composting technologies using life cycle assessment
Influence of assumptions about selection and recycling efficiencies on the LCA of integrated waste management systems
Life cycle assessment of Australian automotive door skins
Integrating life cycle costs and environmental impacts of composite rail car-bodies for a Korean train
A spatially explicit life cycle inventory of the global textile chain
Environmental performance assessment of hardboard manufacture
A comprehensive environmental assessment of petrochemical solvent production
Life cycle assessment of primary magnesium production using the Pidgeon process in China
Application of life cycle assessment to the production of man-made crystal glass
The International Journal of Life Cycle Assessment : Volume 14, Issue 4, June 2009
The International Journal of Life Cycle Assessment : Volume 14, Issue 3, May 2009
The International Journal of Life Cycle Assessment : Volume 14, Issue 1, Supplement,May 2009
The International Journal of Life Cycle Assessment : Volume 14, Issue 2, March 2009
The International Journal of Life Cycle Assessment : Volume 14, Issue 1, January 2009
The International Journal of Life Cycle Assessment : Volume 13
The International Journal of Life Cycle Assessment : Volume 12
The International Journal of Life Cycle Assessment : Volume 11
The International Journal of Life Cycle Assessment : Volume 10
The International Journal of Life Cycle Assessment : Volume 9
The International Journal of Life Cycle Assessment : Volume 8
The International Journal of Life Cycle Assessment : Volume 7
The International Journal of Life Cycle Assessment : Volume 6
The International Journal of Life Cycle Assessment : Volume 5
The International Journal of Life Cycle Assessment : Volume 4
The International Journal of Life Cycle Assessment : Volume 3
The International Journal of Life Cycle Assessment : Volume 2

Similar Documents

...
Life Cycle Assessment of a Barge-Type Floating Wind Turbine and Comparison with Other Types of Wind Turbines

Article

...
Life Cycle Assessment of Tall Onshore Hybrid Steel Wind Turbine Towers

Article

...
Application of TRACI and CML Modeling Tools in Life Cycle Impact Assessment of Municipal Wastes

Article

...
Experimental study on performance of automotive air conditioning system using R-152a refrigerant

Article

...
Midpoints versus endpoints: The sacrifices and benefits

Article

...
Energy consummation and environmental emissions assessment of a refrigeration compressor based on life cycle assessment methodology

Article

...
Stakeholder involvement in australian paper and packaging waste management LCA study

Article

...
Comparative life cycle assessment of silver nanoparticle synthesis routes

Article

...
Global Warming Potential of New Gaseous Refrigerants Used in Chillers in HVAC Systems

Article

Life cycle assessment of Australian automotive door skins

Content Provider Springer Nature Link
Author Puri, Prateek Compston, Paul Panta, Victor
Copyright Year 2009
Abstract Policy initiatives, such as the EU End of Life Vehicle (ELV) Directive for only 5% landfilling by 2015, are increasing the pressure for higher material recyclability rates. This is stimulating research into material alternatives and end-of-life strategies for automotive components. This study presents a Life Cycle Assessment (LCA) on an Australian automotive component, namely an exterior door skin. The functional unit for this study is one door skin set (4 exterior skins). The material alternatives are steel, which is currently used by Australian manufacturers, aluminium and glass-fiber reinforced polypropylene composite. Only the inputs and outputs relative to the door skin production, use and end-of-life phases were considered within the system boundary. Landfill, energy recovery and mechanical recycling were the end-of-life phases considered. The aim of the study is to highlight the most environmentally attractive material and end-of-life option.The LCA was performed according to the ISO 14040 standard series. All information considered in this study (use of fossil and non fossil based energy resources, water, chemicals etc.) were taken up in in-depth data. The data for the production, use and end-of-life phases of the door skin set was based upon softwares such as SimaPro and GEMIS which helped in the development of the inventory for the different end-of-life scenarios. In other cases, the inventory was developed using derivations obtained from published journals. Some data was obtained from GM-Holden and the Co-operative research Centre for Advanced Automotive Technology (AutoCRC), in Australia. In cases where data from the Australian economy was unavailable, such as the data relating to energy recovery methods, a generic data set based on European recycling companies was employed. The characterization factors used for normalization of data were taken from (Saling et. al. Int J Life Cycle Assess 7(4):203–218 2002) which detailed the method of carrying out an LCA.The production phase results in maximum raw material consumption for all materials, and it is higher for metals than for the composite. Energy consumption is greatest in the use phase, with maximum consumption for steel. Aluminium consumes most energy in the production phase. Global Warming Potential (GWP) also follows a trend similar to that of energy consumption. Photo Oxidants Creation Potential (POCP) is the highest for the landfill scenario for the composite, followed by steel and aluminium. Acidification Potential (AP) is the highest for all the end-of-life scenarios of the composite. Ozone Depletion Potential (ODP) is the highest for the metals. The net water emissions are also higher for composite in comparison to metals despite high pollution in the production phases of metallic door skins. Solid wastes are higher for the metallic door skins.The composite door skin has the lowest energy consumption in the production phase, due to the low energy requirements during the manufacturing of E-glass and its fusion with polypropylene to form sheet molding compounds. In general, the air emissions during the use phase are strongly dependent on the mass of the skins, with higher emissions for the metals than for the composite. Material recovery through recycling is the highest in metals due to efficient separation techniques, while mechanical recycling is the most efficient for the composite. The heavy steel skins produce the maximum solid wastes primarily due to higher fuel consumption. Water pollution reduction benefit is highest in case of metals, again due to the high efficiency of magnetic separation technique in the case of steel and eddy current separation technique in the case of aluminium. Material recovery in these metals reduces the amount of water needed to produce a new door skin set (water employed mainly in the ingot casting stage). Moreover, the use of heavy metals, inorganic salts and other chemicals is minimized by efficient material recovery.The use of the studied type of steel for the door skins is a poor environmental option in every impact category. Aluminium and composite materials should be considered to develop a more sustainable and energy efficient automobile. In particular, this LCA study shows that glass-fiber composite skins with mechanical recycling or energy recovery method could be environmentally desirable, compared to aluminium and steel skins. However, the current limit on the efficiency of recycling is the prime barrier to increasing the sustainability of composite skins.The study is successful in developing a detailed LCA for the three different types of door skin materials and their respective recycling or end-of-life scenarios. The results obtained could be used for future work on an eco-efficiency portfolio for the entire car. However, there is a need for a detailed assessment of toxicity and risk potentials arising from each of the four different types of door skin sets. This will require greater communication between academia and the automotive industry to improve the quality of the LCA data. Sensitivity analysis needs to be performed such as the assessment of the impact of varying substitution factors on the life cycle of a door skin. Incorporation of door skin sets made of new biomaterials need to be accounted for as another functional unit in future LCA studies.
Starting Page 420
Ending Page 428
Page Count 9
File Format PDF
ISSN 09483349
Journal The International Journal of Life Cycle Assessment
Volume Number 14
Issue Number 5
e-ISSN 16147502
Language English
Publisher Springer-Verlag
Publisher Date 2009-05-21
Publisher Place Berlin, Heidelberg
Access Restriction One Nation One Subscription (ONOS)
Subject Keyword Acidification potential (AP) Aluminium Automotive door skins Composite material Energy recovery Global warming potential (GWP) Landfill Life cycle assessment (LCA) Mechanical recycling Ozone depletion potential (ODP) Photo oxidants creation potential (POCP) Steel Environmental Economics Environment
Content Type Text
Resource Type Article
Subject Environmental Science
  • About
  • Disclaimer
  • Feedback
  • Sponsor
  • Contact
  • Chat with Us
About National Digital Library of India (NDLI)
NDLI logo

National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.

Learn more about this project from here.

Disclaimer

NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.

Feedback

Sponsor

Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.

Contact National Digital Library of India
Central Library (ISO-9001:2015 Certified)
Indian Institute of Technology Kharagpur
Kharagpur, West Bengal, India | PIN - 721302
See location in the Map
03222 282435
Mail: support@ndl.gov.in
Sl. Authority Responsibilities Communication Details
1 Ministry of Education (GoI),
Department of Higher Education
Sanctioning Authority https://www.education.gov.in/ict-initiatives
2 Indian Institute of Technology Kharagpur Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project https://www.iitkgp.ac.in
3 National Digital Library of India Office, Indian Institute of Technology Kharagpur The administrative and infrastructural headquarters of the project Dr. B. Sutradhar  bsutra@ndl.gov.in
4 Project PI / Joint PI Principal Investigator and Joint Principal Investigators of the project Dr. B. Sutradhar  bsutra@ndl.gov.in
Prof. Saswat Chakrabarti  will be added soon
5 Website/Portal (Helpdesk) Queries regarding NDLI and its services support@ndl.gov.in
6 Contents and Copyright Issues Queries related to content curation and copyright issues content@ndl.gov.in
7 National Digital Library of India Club (NDLI Club) Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach clubsupport@ndl.gov.in
8 Digital Preservation Centre (DPC) Assistance with digitizing and archiving copyright-free printed books dpc@ndl.gov.in
9 IDR Setup or Support Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops idr@ndl.gov.in
I will try my best to help you...
Cite this Content
Loading...