Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Schmidt, Jannick H. |
| Copyright Year | 2008 |
| Abstract | When dealing with system delimitation in environmental life cycle assessment (LCA), two methodologies are typically referred to: consequential LCA and attributional LCA. The consequential approach uses marginal data and avoids co-product allocation by system expansion. The attributional approach uses average or supplier-specific data and treats co-product allocation by applying allocation factors. Agricultural LCAs typically regard local production as affected and they only include the interventions related to the harvested area. However, as changes in demand and production may affect foreign production, yields and the displacement of other crops in regions where the agricultural area is constrained, there is a need for incorporating the actual affected processes in agricultural consequential LCA. This paper presents a framework for defining system boundaries in consequential agricultural LCA. The framework is applied to an illustrative case study; LCA of increased demand for wheat in Denmark. The aim of the LCA screening is to facilitate the application of the proposed methodology. A secondary aim of the LCA screening is to illustrate that there are different ways to meet increased demand for agricultural products and that the environmental impact from these different ways vary significantly.The proposed framework mainly builds on the work of Ekvall T, Weidema BP (Int J Life Cycle Assess 9(3):pp. 161–171, 2004), agricultural statistics (FAOSTAT, FAOSTAT Agriculture Data, Food and Agriculture Organisation of the United Nations (2006), http://apps.fao.org/ (accessed June)), and agricultural outlook (FAPRI, US and world agricultural outlook, Food and Agriculture Research Institute, Iowa, 2006a). The framework and accompanying guidelines concern the suppliers affected, the achievement of increased production (area or yield), and the substitutions between crops. The framework, which is presented as a decision tree, proposes four possible systems that may be affected as a result of the increased demand of a certain crop in a certain area.The core of the proposed methodology is a decision tree, which guides the identification of affected processes in consequential agricultural LCA. The application of the methodology is illustrated with a case study presenting an LCA screening of wheat in Denmark. Different scenarios of how increased demand for wheat can be met show significant differences in emission levels as well as land use.The great differences in potential environmental impacts of the analysed results underpin the importance of system delimitation. The consequential approach is appointed as providing a more complete and accurate but also less precise result, while the attributional approach provides a more precise result but with inherent blind spots, i.e. a less accurate result.The main features of the proposed framework and case study are: (1) an identification of significant sensitivity on results of system delimitation, and (2) a formalised way of identifying blind spots in attributional agricultural LCAs.It is recommended to include considerations on the basis of the framework presented in agricultural LCAs if relevant. This may be done either by full quantification or as qualitative identification of the most likely ways the agricultural product system will respond on changed demand. Hereby, it will be possible to make reservations to the conclusions drawn on the basis of an attributional LCA. |
| Starting Page | 350 |
| Ending Page | 364 |
| Page Count | 15 |
| File Format | |
| ISSN | 09483349 |
| Journal | The International Journal of Life Cycle Assessment |
| Volume Number | 13 |
| Issue Number | 4 |
| e-ISSN | 16147502 |
| Language | English |
| Publisher | Springer-Verlag |
| Publisher Date | 2008-05-15 |
| Publisher Place | Berlin, Heidelberg |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Agriculture Consequential modelling Marginal data System boundaries System delimitation System expansion Wheat Environmental Economics Environment |
| Content Type | Text |
| Resource Type | Article |
| Subject | Environmental Science |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|