Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Kim, Seungdo Dale, Bruce E. Jenkins, Robin |
| Copyright Year | 2008 |
| Abstract | The goal of this study is to estimate the county-level environmental performance for continuous corn cultivation of corn grain and corn stover grown under the current tillage practices for various corn-growing locations in the US Corn Belt. The environmental performance of corn grain varies with its farming location because of climate, soil properties, cropping management, etc. Corn stover, all of the above ground parts of the corn plant except the grain, would be used as a feedstock for cellulosic ethanol.Two cropping systems are under investigation: corn produced for grain only without collecting corn stover (referred to as CRN) and corn produced for grain and stover harvest (referred to as CSR). The functional unit in this study is defined as dry biomass, and the reference flow is 1 kg of dry biomass. The system boundary includes processes from cradle to farm gate. The default allocation procedure between corn grain and stover in the CSR system is the system expansion approach. County-level soil organic carbon dynamics, nitrate losses due to leaching, and nitrogen oxide and nitrous oxide emissions are simulated by the DAYCENT model. Life cycle environmental impact categories considered in this study are total fossil energy use, climate change (referred to as greenhouse gas emissions), acidification, and eutrophication. Sensitivities on farming practices and allocation are included.Simulations from the DAYCENT model predict that removing corn stover from soil could decrease nitrogen-related emissions from soil (i.e., N$_{2}$O, NO$_{ x }$, and NO$_{3}$ $^{−}$ leaching). DAYCENT also predicts a reduction in the annual accumulation rates of soil organic carbon (SOC) with corn stover removal. Corn stover has a better environmental performance than corn grain according to all life cycle environmental impacts considered. This is due to lower consumption of agrochemicals and fuel used in the field operations and lower nitrogen-related emissions from the soil.The primary source of total fossil energy associated with biomass production is nitrogen fertilizer, accounting for over 30% of the total fossil energy. Nitrogen-related emissions from soil (i.e., N$_{2}$O, NO$_{ x }$, and NO$_{3}$ $^{−}$ leaching) are the primary contributors to all other life cycle environmental impacts considered in this study.The environmental performance of corn grain and corn stover varies with the farming location due to crop management, soil properties, and climate conditions. Several general trends were identified from this study. Corn stover has a lower impact than corn grain in terms of total fossil energy, greenhouse gas emissions, acidification, and eutrophication. Harvesting corn stover reduces nitrogen-related emissions from the soil (i.e., N$_{2}$O, NO$_{ x }$, NO$_{3}$ $^{−}$). The accumulation rate of soil organic carbon is reduced when corn stover is removed, and in some cases, the soil organic carbon level decreases. Harvesting only the cob portion of the stover would reduce the negative impact of stover removal on soil organic carbon sequestration rate while still bringing the benefit of lower nitrogen-related emissions from the soil. No-tillage practices offer higher accumulation rates of soil organic carbon, lower fuel consumption, and lower nitrogen emissions from the soil than the current or conventional tillage practices. Planting winter cover crops could be a way to reduce nitrogen losses from soil and to increase soil organic carbon levels.County-level modeling is more accurate in estimating the local environmental burdens associated with biomass production than national- or regional-level modeling. When possible, site-specific experimental information on soil carbon and nitrogen dynamics should be obtained to reflect the system more accurately. The allocation approach between corn grain and stover significantly affects the environmental performance of each. The preferred allocation method is the system expansion approach where incremental fuel usage, additional nutrients in the subsequent growing season, and changes in soil carbon and nitrogen dynamics due to removing corn stover are assigned to only the collected corn stover. |
| Starting Page | 160 |
| Ending Page | 174 |
| Page Count | 15 |
| File Format | |
| ISSN | 09483349 |
| Journal | The International Journal of Life Cycle Assessment |
| Volume Number | 14 |
| Issue Number | 2 |
| e-ISSN | 16147502 |
| Language | English |
| Publisher | Springer-Verlag |
| Publisher Date | 2009-01-20 |
| Publisher Place | Berlin, Heidelberg |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Biorefinery Cob Corn Life cycle assessment Soil organic carbon Stover Tillage Winter cover crop Environmental Economics Environment |
| Content Type | Text |
| Resource Type | Article |
| Subject | Environmental Science |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|