Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Stokes, Jennifer Horvath, Arpad |
| Copyright Year | 2006 |
| Abstract | This paper discusses the merging of methodological aspects of two known methods into a hybrid on an application basis. Water shortages are imminent due to scarce supply and increasing demand in many parts of the world. In California, this is caused primarily by population growth. As readily available water is depleted, alternatives that may have larger energy and resource requirements and, therefore, environmental impacts must be considered. In order to develop a more environmentally responsible and sustainable water supply system, these environmental implications should be incorporated into planning decisions. Comprehensive accounting for environmental effects requires life cycle assessment (LCA), a systematic account of resource use and environmental emissions caused by extracting raw materials, manufacturing, constructing, operating, maintaining, and decommissioning the water infrastructure. In this study, a hybrid LCA approach, combining elements of process-based and economic input-output-based LCA was used to compare three supply alternatives: importing, recycling, and desalinating water. For all three options, energy use and air emissions associated with energy generation, vehicle and equipment operation, and material production were quantified for life-cycle phases and water supply functions (supply, treatment, and distribution). The Water-Energy Sustainability Tool was developed to inform water planning decisions. It was used to evaluate the systems of a Northern and a Southern California water utility. The results showed that for the two case study utilities desalination had 2–5 times larger energy demand and caused 2–18 times more emissions than importation or recycling, due primarily to the energy-intensity of the treatment process. The operation life-cycle phase created the most energy consumption with 56% to 90% for all sources and case studies. For each water source, a different life-cycle phase dominated energy consumption. For imported water, supply contributed 56% and 86% of the results for each case study; for desalination, treatment accounted for approximately 85%; for recycled water, distribution dominated with 61% and 74% of energy use. The study calculated external costs of air pollution from all three water supply systems. These costs are borne by society, but not paid by producers. The external costs were found to be 6% of desalinated water production costs for both case studies, 8% of imported water production costs in Southern California, and 1–2% for the recycled water systems and for the Northern California utility's imported water system. Recycling water was found to be more energy intensive in Northern than in Southern California, but the results for imported water were similar. While the energy demand of water recycling was found to be larger than importation in Northern California, the two alternatives were competitive in Southern California. For all alternatives in both case studies, the energy consumed by system operation dominated the results, but maintenance was also found to be significant. Energy production was found to be the largest contributor in all water provision systems, followed by materials production. The assessment of external costs revealed that the environmental effects of energy and air emissions caused by infrastructure is measurable, and in some cases, significant relative to the economic cost of water. This paper advocates the necessity of LCA in water planning, and discusses the applicability of the described model to water utilities. |
| Starting Page | 335 |
| Ending Page | 343 |
| Page Count | 9 |
| File Format | |
| ISSN | 09483349 |
| Journal | The International Journal of Life Cycle Assessment |
| Volume Number | 11 |
| Issue Number | 5 |
| e-ISSN | 16147502 |
| Language | English |
| Publisher | Ecomed |
| Publisher Date | 2005-06-10 |
| Publisher Place | Landsberg |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Environment Environmental Economics |
| Content Type | Text |
| Resource Type | Article |
| Subject | Environmental Science |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|