Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Hamilton, Zachary Neuilly, Melanie Angela Lee, Stephen Barski, Robert |
| Copyright Year | 2014 |
| Abstract | Recent evolutions in actuarial research have revealed the potential increased utility of machine learning and data-mining strategies to develop statistical models such as classification/decision-tree analysis and neural networks, which are said to mimic the decision-making of practitioners. The current article compares such actuarial modeling methods with a traditional logistic regression risk-assessment development approach.Utilizing a large purposive sample of Washington State offenders (N = 297,600), the current study examines and compares the predictive validity of the currently used Washington State Static Risk Assessment (SRA) instrument to classification tree analysis/random forest and neural network models.Overall findings varied, being dependent on the outcome of interest, with the best model for each method resulting in AUCs ranging from 0.732 to 0.762. Findings reveal some predictive performance improvements with advanced machine-learning methodologies, yet the logistic regression models demonstrate comparable predictive performance.The study concluded that while data-mining techniques hold potential for improvements over traditional methods, regression-based models demonstrate comparable, and often improved, prediction performance with noted parsimony and greater interpretability. |
| Starting Page | 299 |
| Ending Page | 318 |
| Page Count | 20 |
| File Format | |
| ISSN | 15733750 |
| Journal | Journal of Experimental Criminology |
| Volume Number | 11 |
| Issue Number | 2 |
| e-ISSN | 15728315 |
| Language | English |
| Publisher | Springer Netherlands |
| Publisher Date | 2014-11-13 |
| Publisher Place | Dordrecht |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Random forest Neural network Recidivism Risk assessment Criminology & Criminal Justice Political Science Social Sciences |
| Content Type | Text |
| Resource Type | Article |
| Subject | Law |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|