Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Niinemets, Ülo |
| Copyright Year | 2010 |
| Abstract | Changes in the efficiency of light interception and in the costs for light harvesting along the light gradients from the top of the plant canopy to the bottom are the major means by which efficient light harvesting is achieved in ecosystems. In the current review analysis, leaf, shoot and canopy level determinants of plant light harvesting, the light-driven plasticity in key traits altering light harvesting, and variations among different plant functional types and between species of different shade tolerance are analyzed. In addition, plant age- and size-dependent alterations in light harvesting efficiency are also examined. At the leaf level, the variations in light harvesting are driven by alterations in leaf chlorophyll content modifies the fraction of incident light harvested by given leaf area, and in leaf dry mass per unit area (M $_{A}$) that determines the amount of leaf area formed with certain fraction of plant biomass in the leaves. In needle-leaved species with complex foliage cross-section, the degree of foliage surface exposure also depends on the leaf total-to-projected surface area ratio. At the shoot scale, foliage inclination angle distribution and foliage spatial aggregation are the major determinants of light harvesting, while at the canopy scale, branching frequency, foliage distribution and biomass allocation to leaves (F $_{L}$) modify light harvesting significantly. F $_{L}$ decreases with increasing plant size from herbs to shrubs to trees due to progressively larger support costs in plant functional types with greater stature. Among trees, F $_{L}$ and stand leaf area index scale positively with foliage longevity. Plant traits altering light harvesting have a large potential to adjust to light availability. Chlorophyll per mass increases, while M $_{A}$, foliage inclination from the horizontal and degree of spatial aggregation decrease with decreasing light availability. In addition, branching frequency decreases and canopies become flatter in lower light. All these plastic modifications greatly enhance light harvesting in low light. Species with greater shade tolerance typically form a more extensive canopy by having lower M $_{A}$ in deciduous species and enhanced leaf longevity in evergreens. In addition, young plants of shade tolerators commonly have less strongly aggregated foliage and flatter canopies, while in adult plants partly exposed to high light, higher shade tolerance of foliage allows the shade tolerators to maintain more leaf layers, resulting in extended crowns. Within a given plant functional type, increases in plant age and size result in increases in M $_{A}$, reductions in F $_{L}$ and increases in foliage aggregation, thereby reducing plant leaf area index and the efficiency of light harvesting. Such dynamic modifications in plant light harvesting play a key role in stand development and productivity. Overall, the current review analysis demonstrates that a suite of chemical and architectural traits at various scales and their plasticity drive plant light harvesting efficiency. Enhanced light harvesting can be achieved by various combinations of traits, and these suites of traits vary during plant ontogeny. |
| Starting Page | 693 |
| Ending Page | 714 |
| Page Count | 22 |
| File Format | |
| ISSN | 09123814 |
| Journal | Ecological Research |
| Volume Number | 25 |
| Issue Number | 4 |
| e-ISSN | 14401703 |
| Language | English |
| Publisher | Springer Japan |
| Publisher Date | 2010-03-31 |
| Publisher Place | Japan |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Bifurcation ratio Biomass allocation Foliage distribution Leaf structure Light interception Review analysis Shade tolerance Shoot architecture Stand age Forestry Behavioural Sciences Evolutionary Biology Zoology Plant Sciences Ecology |
| Content Type | Text |
| Resource Type | Article |
| Subject | Ecology, Evolution, Behavior and Systematics |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|