Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Shi, Weiwei Zhu, Yongxin Huang, Tian Sheng, Gehao Lian, Yong Wang, Guoxing Chen, Yufeng |
| Copyright Year | 2016 |
| Abstract | Big data techniques have been applied to power grid for the prediction and evaluation of grid conditions. However, the raw data quality can rarely meet the requirement of precise data analytics since raw data set usually contains samples with missing data to which the common data mining models are sensitive. Besides, the raw training data from a single monitoring system, e.g. dissolved gas analysis (DGA), are rarely sufficient for training in the form of valid instances since raw data set usually contains samples with noisy data. Though classic methods like neural network can be used to fill the gaps of missing data and classify the fault type, their models often fail to fit the rules of power grid conditions. This paper presents an integrated data preprocessing framework (DPF) based on Apache Spark to improve the prediction accuracy for data sets with missing data points and classification accuracy with noise data as well as to meet the big data requirement, which mainly combines missing data prediction, data fusion, data cleansing and fault type classification. First, the prediction model is trained based on the linear regression (LinR). Afterwards, we propose an optimized linear method (OLR) to improve the prediction accuracy. Then, to better utilize the strong correlation among different data sources, new data features extracted by persons correlation coefficient (PCC) are fused into a training data set. Next, principal component analysis (PCA) is taken to reduce the side effect brought by the new feature as well as retaining significant information for classification. Finally, the classification model based on logistic regression (LogR) and support vector machine (SVM) is trained to classify the fault type of electric equipment. We test the DPF framework on missing data prediction and fault type classification of power transformers in power grid system. The experimental results show that the predictors based on the proposed framework achieve lower mean square error and the classifiers obtain higher accuracy than traditional ones. Besides, the training time required for training large-scale data shows a decreasing trend. Therefore, the data preprocessing framework DPF would be a good candidate to predict the missing data and classify the fault type in power grid system. |
| Starting Page | 221 |
| Ending Page | 236 |
| Page Count | 16 |
| File Format | |
| ISSN | 19398018 |
| Journal | Journal of Signal Processing Systems |
| Volume Number | 86 |
| Issue Number | 2-3 |
| e-ISSN | 19398115 |
| Language | English |
| Publisher | Springer US |
| Publisher Date | 2016-03-02 |
| Publisher Place | New York |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Big data Apache spark Framework Missing data prediction Fault diagnose Signal,Image and Speech Processing Circuits and Systems Electrical Engineering Image Processing and Computer Vision Pattern Recognition Computer Imaging, Vision, Pattern Recognition and Graphics |
| Content Type | Text |
| Resource Type | Article |
| Subject | Theoretical Computer Science Signal Processing Control and Systems Engineering Information Systems Modeling and Simulation Hardware and Architecture |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|