Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Xue, Shaofei Jiang, Hui Dai, Lirong Liu, Qingfeng |
| Copyright Year | 2015 |
| Abstract | Recently several speaker adaptation methods have been proposed for deep neural network (DNN) in many large vocabulary continuous speech recognition (LVCSR) tasks. However, only a few methods rely on tuning the connection weights in trained DNNs directly to optimize system performance since it is very prone to over-fitting especially when some class labels are missing in the adaptation data. In this paper, we propose a new speaker adaptation method for the hybrid NN/HMM speech recognition model based on singular value decomposition (SVD). We apply SVD on the weight matrices in trained DNNs and then tune rectangular diagonal matrices with the adaptation data. This alleviates the over-fitting problem via updating the weight matrices slightly by only modifying the singular values. We evaluate the proposed adaptation method in two standard speech recognition tasks, namely TIMIT phone recognition and large vocabulary speech recognition in the Switchboard task. Experimental results have shown that it is effective to adapt large DNN models using only a small amount of adaptation data. For example, recognition results in the Switchboard task have shown that the proposed SVD-based adaptation method may achieve up to 3-6 % relative error reduction using only a few dozens of adaptation utterances per speaker. |
| Starting Page | 175 |
| Ending Page | 185 |
| Page Count | 11 |
| File Format | |
| ISSN | 19398018 |
| Journal | Journal of Signal Processing Systems |
| Volume Number | 82 |
| Issue Number | 2 |
| e-ISSN | 19398115 |
| Language | English |
| Publisher | Springer US |
| Publisher Date | 2015-06-10 |
| Publisher Place | New York |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Deep neural network (DNN) Hybrid DNN/HMM Speaker adaptation Singular value decomposition (SVD) Signal, Image and Speech Processing Circuits and Systems Electrical Engineering Image Processing and Computer Vision Pattern Recognition Computer Imaging, Vision, Pattern Recognition and Graphics |
| Content Type | Text |
| Resource Type | Article |
| Subject | Theoretical Computer Science Signal Processing Control and Systems Engineering Information Systems Modeling and Simulation Hardware and Architecture |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|