Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Barnard, Kobus Fan, Quanfu Swaminathan, Ranjini Hoogs, Anthony Collins, Roderic Rondot, Pascale Kaufhold, John |
| Copyright Year | 2007 |
| Abstract | We present a new data set of 1014 images with manual segmentations and semantic labels for each segment, together with a methodology for using this kind of data for recognition evaluation. The images and segmentations are from the UCB segmentation benchmark database (Martin et al., in International conference on computer vision, vol. II, pp. 416–421, 2001). The database is extended by manually labeling each segment with its most specific semantic concept in WordNet (Miller et al., in Int. J. Lexicogr. 3(4):235–244, 1990). The evaluation methodology establishes protocols for mapping algorithm specific localization (e.g., segmentations) to our data, handling synonyms, scoring matches at different levels of specificity, dealing with vocabularies with sense ambiguity (the usual case), and handling ground truth regions with multiple labels. Given these protocols, we develop two evaluation approaches. The first measures the range of semantics that an algorithm can recognize, and the second measures the frequency that an algorithm recognizes semantics correctly. The data, the image labeling tool, and programs implementing our evaluation strategy are all available on-line (kobus.ca//research/data/IJCV_2007). We apply this infrastructure to evaluate four algorithms which learn to label image regions from weakly labeled data. The algorithms tested include two variants of multiple instance learning (MIL), and two generative multi-modal mixture models. These experiments are on a significantly larger scale than previously reported, especially in the case of MIL methods. More specifically, we used training data sets up to 37,000 images and training vocabularies of up to 650 words. We found that one of the mixture models performed best on image annotation and the frequency correct measure, and that variants of MIL gave the best semantic range performance. We were able to substantively improve the performance of MIL methods on the other tasks (image annotation and frequency correct region labeling) by providing an appropriate prior. |
| Starting Page | 199 |
| Ending Page | 217 |
| Page Count | 19 |
| File Format | |
| ISSN | 09205691 |
| Journal | International Journal of Computer Vision |
| Volume Number | 77 |
| Issue Number | 1-3 |
| e-ISSN | 15731405 |
| Language | English |
| Publisher | Springer US |
| Publisher Date | 2007-08-07 |
| Publisher Place | Boston |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Image annotation Region labeling Ground truth data Segmetation Image semantics WordNet Pattern Recognition Image Processing and Computer Vision Artificial Intelligence (incl. Robotics) Computer Imaging, Vision, Pattern Recognition and Graphics |
| Content Type | Text |
| Resource Type | Article |
| Subject | Artificial Intelligence Computer Vision and Pattern Recognition Software |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|