Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Corapcioglu, M. Yavuz Jiang, Shiyan Kim, Seung hyun |
| Copyright Year | 1999 |
| Abstract | The presence of colloidal particles in groundwater can enhance contaminant transport by reducing retardation effects and carrying them to distances further than predicted by a conventional advective/dispersive equation with normal retardation values. When colloids exist in porous media and affect contaminant migration, the system can best be simulated as a three-phase medium. Mechanisms of mass transfer from one phase to another by colloids and contaminants can be kinetic or equilibrium-based, depending on the sorption–desorption reaction rate between the aqueous and solid phases. When the rate of sorption between the water phase and the solid phase(s) is not much greater than the rate of change in contaminant concentration in the water phase, kinetic sorption models may better describe the phenomenon. In some cases of modeling one or more mass transfer processes, a useful simplification may be to introduce the local equilibrium assumption. In this study, the local equilibrium assumption for sorption processes on colloidal surfaces (hybrid equilibrium model) was compared with kinetic-based models. Sensitivity analyses were conducted to deduce the effect of major parameters on contaminant transport. The results obtained from the hybrid equilibrium model in predicting the transport of colloid-facilitated groundwater contaminant are very similar to those of the kinetic model, when the point of interest is not at contaminant and colloid source vicinities and the time of interest is sufficiently long for imposed sources. |
| Starting Page | 373 |
| Ending Page | 390 |
| Page Count | 18 |
| File Format | |
| ISSN | 01693913 |
| Journal | Transport in Porous Media |
| Volume Number | 36 |
| Issue Number | 3 |
| e-ISSN | 15731634 |
| Language | English |
| Publisher | Kluwer Academic Publishers |
| Publisher Date | 1999-01-01 |
| Publisher Place | Dordrecht |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Industrial Chemistry/Chemical Engineering Hydrogeology Geotechnical Engineering Mechanics, Fluids, Thermodynamics Civil Engineering |
| Content Type | Text |
| Resource Type | Article |
| Subject | Catalysis |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|