Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Deurer, M. Vogeler, I. Clothier, B. E. Scotter, D. R. |
| Copyright Year | 2004 |
| Abstract | By using nuclear magnetic resonance imaging (NMRI) we have been able to analyse dispersion at the microscopic scale during steady-state flow through water-saturated glass beads. The flow rate through the porous medium was chosen high enough in order to neglect the influence of molecular diffusion on dispersion. Velocity statistics were measured, by NMRI, within slices of increasing thickness perpendicular to the direction of flow. It took more than two bead diameters before a representative elementary volume (REV) for the mean velocity was reached. This was in a region in the middle of the column that was not influenced by the boundary conditions. There the velocity variance decreased exponentially as a function of the slice thickness, due we consider to the formation of an interconnecting streamline network. The exponential decrease in the velocity variance reflects the transition from a local pattern of stochastic–convective flow to a convective–dispersion regime at the scale of the REV. We found that the point-like preferential influx and efflux boundary condition increased velocity variances and thus enhanced longitudinal hydrodynamic dispersion. Using the transverse correlation length of longitudinal velocity variance, we derived a mean transverse dispersivity that agreed well with Saffman’s (1959) model. So we have been able to provide for the first time a direct observation verification of a part of Saffman’s (1959) conjectures. By NMRI we observed this value to be independent of the observation scale of the slice thickness. |
| Starting Page | 145 |
| Ending Page | 166 |
| Page Count | 22 |
| File Format | |
| ISSN | 01693913 |
| Journal | Transport in Porous Media |
| Volume Number | 54 |
| Issue Number | 2 |
| e-ISSN | 15731634 |
| Language | English |
| Publisher | Kluwer Academic Publishers |
| Publisher Date | 2004-01-01 |
| Publisher Place | Dordrecht |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Industrial Chemistry/Chemical Engineering Hydrogeology Geotechnical Engineering Mechanics, Fluids, Thermodynamics Civil Engineering |
| Content Type | Text |
| Resource Type | Article |
| Subject | Catalysis |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|