Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Liu, Haihu Valocchi, Albert J. Kang, Qinjun Werth, Charles |
| Copyright Year | 2013 |
| Abstract | A lattice Boltzmann high-density-ratio model, which uses diffuse interface theory to describe the interfacial dynamics and was proposed originally by Lee and Liu (J Comput Phys 229:8045–8063, 2010), is extended to simulate immiscible multiphase flows in porous media. A wetting boundary treatment is proposed for concave and convex corners. The capability and accuracy of this model is first validated by simulations of equilibrium contact angle, injection of a non-wetting gas into two parallel capillary tubes, and dynamic capillary intrusion. The model is then used to simulate gas displacement of liquid in a homogenous two-dimensional pore network consisting of uniformly spaced square obstructions. The influence of capillary number (Ca), viscosity ratio ( $$M$$ ), surface wettability, and Bond number (Bo) is studied systematically. In the drainage displacement, we have identified three different regimes, namely stable displacement, capillary fingering, and viscous fingering, all of which are strongly dependent upon the capillary number, viscosity ratio, and Bond number. Gas saturation generally increases with an increase in capillary number at breakthrough, whereas a slight decrease occurs when Ca is increased from $$8.66\times 10^{-4}$$ to $$4.33\times 10^{-3}$$ , which is associated with the viscous instability at high Ca. Increasing the viscosity ratio can enhance stability during displacement, leading to an increase in gas saturation. In the two-dimensional phase diagram, our results show that the viscous fingering regime occupies a zone markedly different from those obtained in previous numerical and experimental studies. When the surface wettability is taken into account, the residual liquid blob decreases in size with the affinity of the displacing gas to the solid surface. Increasing Bo can increase the gas saturation, and stable displacement is observed for $$Bo>1$$ because the applied gravity has a stabilizing influence on the drainage process. |
| Starting Page | 555 |
| Ending Page | 580 |
| Page Count | 26 |
| File Format | |
| ISSN | 01693913 |
| Journal | Transport in Porous Media |
| Volume Number | 99 |
| Issue Number | 3 |
| e-ISSN | 15731634 |
| Language | English |
| Publisher | Springer Netherlands |
| Publisher Date | 2013-07-24 |
| Publisher Place | Dordrecht |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Pore-scale simulations Fingering Porous media Multiphase flows Lattice Boltzmann Geotechnical Engineering & Applied Earth Sciences Industrial Chemistry/Chemical Engineering Civil Engineering Hydrogeology Classical Continuum Physics |
| Content Type | Text |
| Resource Type | Article |
| Subject | Catalysis |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|