Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Niessner, Jennifer Berg, Steffen Hassanizadeh, S. Majid |
| Copyright Year | 2011 |
| Abstract | The extended Darcy’s law is a commonly used equation for the description of immiscible two-phase flow in porous media. It dates back to the 1940s and is essentially an empirical relationship. According to the extended Darcy’s law, pressure gradient and gravity are the only driving forces for the flow of each fluid. Within the last two decades, more advanced and physically based descriptions for multiphase flow in porous media have been developed. In this work, the extended Darcy’s law is compared to a thermodynamically consistent approach which explicitly takes the important role of phase interfaces into account, both as entities and as parameters. In this theoretically derived approach, forces related to capillarity and interfaces appear as driving/resisting forces, in addition to the traditional terms. It turns out that the extended Darcy’s law and the thermodynamically based approach are compatible if either (i) relative permeabilities are a function of saturation only, but capillary pressure is a function of saturation and specific interfacial area or (ii) relative permeabilities are a function of saturation and saturation gradients. Theoretical considerations suggest that the former alternative is only valid in case of reversible displacement while in the general case (irreversible displacement), the latter alternative is relevant. |
| Starting Page | 133 |
| Ending Page | 148 |
| Page Count | 16 |
| File Format | |
| ISSN | 01693913 |
| Journal | Transport in Porous Media |
| Volume Number | 88 |
| Issue Number | 1 |
| e-ISSN | 15731634 |
| Language | English |
| Publisher | Springer Netherlands |
| Publisher Date | 2011-02-05 |
| Publisher Place | Dordrecht |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Porous media Two-phase flow Interfacial area Thermodynamically consistent approach Hydrogeology Classical Continuum Physics Industrial Chemistry/Chemical Engineering Civil Engineering Geotechnical Engineering |
| Content Type | Text |
| Resource Type | Article |
| Subject | Catalysis |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|