Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Wang, Junshan Jasra, Ajay |
| Copyright Year | 2014 |
| Abstract | We consider the computation of the $$\alpha $$ -permanent of a non-negative $$n \times n$$ matrix. This appears in a wide variety of real applications in statistics, physics and computer-science. It is well-known that the exact computation is a #P complete problem. This has resulted in a large collection of simulation-based methods, to produce randomized solutions whose complexity is only polynomial in $$n$$ . This paper will review and develop algorithms for both the computation of the permanent $$\alpha =1$$ and $$\alpha >0$$ permanent. In the context of binary $$n \times n$$ matrices a variety of Markov chain Monte Carlo (MCMC) computational algorithms have been introduced in the literature whose cost, in order to achieve a given level of accuracy, is $$\mathcal {O}(n^7\log ^4(n))$$ ; see Bezakova (Faster Markov chain Monte Carlo algorithms for the permanent and binary contingency tables. University of Chicago, Chicago, 2008), Jerrum et al. (J Assoc Comput Mach 51:671–697, 2004). These algorithms use a particular collection of probability distributions, the ‘ideal’ of which, (in some sense) are not known and need to be approximated. In this paper we propose an adaptive sequential Monte Carlo (SMC) algorithm that can both estimate the permanent and the ideal sequence of probabilities on the fly, with little user input. We provide theoretical results associated to the SMC estimate of the permanent, establishing its convergence. We also analyze the relative variance of the estimate, associated to an ‘ideal’ algorithm (related to our algorithm) and not the one we develop, in particular, computating explicit bounds on the relative variance which depend upon $$n$$ . As this analysis is for an ideal algorithm, it gives a lower-bound on the computational cost, in order to achieve an arbitrarily small relative variance; we find that this cost is $$\mathcal {O}(n^4\log ^4(n))$$ . For the $$\alpha $$ -permanent, perhaps the gold standard algorithm is the importance sampling algorithm of Kou and McCullagh (Biometrika 96:635–644, 2009); in this paper we develop and compare new algorithms to this method; apriori one expects, due to the weight degeneracy problem, that the method of Kou and McCullagh (Biometrika 96:635–644, 2009) might perform very badly in comparison to the more advanced SMC methods we consider. We also present a statistical application of the $$\alpha $$ -permanent for statistical estimation of boson point process and MCMC methods to fit the associated model to data. |
| Starting Page | 231 |
| Ending Page | 248 |
| Page Count | 18 |
| File Format | |
| ISSN | 09603174 |
| Journal | Statistics and Computing |
| Volume Number | 26 |
| Issue Number | 1-2 |
| e-ISSN | 15731375 |
| Language | English |
| Publisher | Springer US |
| Publisher Date | 2014-07-29 |
| Publisher Place | New York |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Monte Carlo $$\alpha $$ -Permanents Relative variance Statistics and Computing/Statistics Programs Artificial Intelligence (incl. Robotics) Statistical Theory and Methods Probability and Statistics in Computer Science |
| Content Type | Text |
| Resource Type | Article |
| Subject | Statistics and Probability Theoretical Computer Science Computational Theory and Mathematics Statistics, Probability and Uncertainty |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|