Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Ksanfomaliti, L. V. |
| Copyright Year | 2000 |
| Abstract | The discovery of planetary systems around alien stars is an outstanding achievement of recent years. The idea that the Solar System may be representative of planetary systems in the Galaxy in general develops upon the knowledge, current until the last decade of the 20th century, that it is the only object of its kind. Studies of the known planets gave rise to a certain stereotype in theoretical research. Therefore, the discovery of exoplanets, which are so different from objects of the Solar System, alters our basic notions concerning the physics and very criteria of normal planets. A substantial factor in the history of the Solar System was the formation of Jupiter. Two waves of meteorite bombardment played an important role in that history. Ultimately there arose a stable low-entropy state of the Solar System, in which Jupiter and the other giants in stable orbits protect the inner planets from impacts by dangerous celestial objects, reducing this danger by many orders of magnitude. There are even variants of the anthropic principle maintaining that life on Earth owes its genesis and development to Jupiter. Some 20 companions more or less similar to Jupiter in mass and a few “infrared dwarfs,” have been found among the 500 solar-type stars belonging to the main sequence. Approximately half of the exoplanets discovered are of the “hot-Jupiter” type. These are giants, sometimes of a mass several times that of Jupiter, in very low orbits and with periods of 3–14 days. All of their parent stars are enriched with heavy elements, [Fe/H] = 0.1–0.2. This may indicate that the process of exoplanet formation depends on the chemical composition of the protoplanetary disk. The very existence of exoplanets of the hot-Jupiter type considered in the context of new theoretical work comes up against the problem of the formation of Jupiter in its real orbit. All the exoplanets in orbits with a semimajor axis of more than 0.15–0.20 astronomical units (AU) have orbital eccentricities of more than 0.1, in most cases of 0.2–0.5. In conjunction with their possible migration into the inner reaches of the Solar System, this poses a threat to the very existence of the inner planets. Recent observations of gas–dust clouds in very young stars show that hydrogen dissipates rapidly, in several million years, and dissipation is completed earlier than, according to the accretion theory, the gas component of such a planet as Jupiter forms. The mass of the remaining hydrogen is usually small, much smaller than Jupiter's mass. However, the giant planets of the Solar System retain a few percent of the amount of hydrogen that should be contained in the early protoplanetary disk, creating difficulties in understanding their formation. A plausible explanation is that gravitational instabilities in the protoplanetary disk could be the mechanism of their rapid formation. |
| Starting Page | 481 |
| Ending Page | 495 |
| Page Count | 15 |
| File Format | |
| ISSN | 00380946 |
| Journal | Solar System Research |
| Volume Number | 34 |
| Issue Number | 6 |
| e-ISSN | 16083423 |
| Language | English |
| Publisher | Kluwer Academic Publishers-Plenum Publishers |
| Publisher Date | 2000-01-01 |
| Publisher Place | New York |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Planetology Astrophysics |
| Content Type | Text |
| Resource Type | Article |
| Subject | Astronomy and Astrophysics Space and Planetary Science |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|