Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Lee, C. O. Arge, C. N. Odstrčil, D. Millward, G. Pizzo, V. Quinn, J. M. Henney, C. J. |
| Copyright Year | 2012 |
| Abstract | The current progression toward solar maximum provides a unique opportunity to use multi-perspective spacecraft observations together with numerical models to better understand the evolution and propagation of coronal mass ejections (CMEs). Of interest to both the scientific and forecasting communities are the Earth-directed “halo” CMEs, since they typically produce the most geoeffective events. However, determining the actual initial geometries of halo CMEs is a challenge due to the plane-of-sky projection effects. Thus the recent 15 February 2011 halo CME event has been selected for this study. During this event the Solar TErrestrial RElations Observatory (STEREO) A and B spacecraft were fortuitously located ∼ 90° away from the Sun–Earth line such that the CME was viewed as a limb event from these two spacecraft, thereby providing a more reliable constraint on the initial CME geometry. These multi-perspective observations were utilized to provide a simple geometrical description that assumes a cone shape for a CME to calculate its angular width and central position. The event was simulated using the coupled Wang–Sheeley–Arge (WSA)-Enlil 3D numerical solar corona-solar wind model. Daily updated global photospheric magnetic field maps were used to drive the background solar wind. To improve our modeling techniques, the sensitivity of the modeled CME arrival times to the initial input CME geometry was assessed by creating an ensemble of numerical simulations based on multiple sets of cone parameters for this event. It was found that the accuracy of the modeled arrival times not only depends on the initial input CME geometry, but also on the accuracy of the modeled solar wind background, which is driven by the input maps of the photospheric field. To improve the modeling of the background solar wind, the recently developed data-assimilated magnetic field synoptic maps produced by the Air Force Data Assimilative Photospheric flux Transport (ADAPT) model were used. The ADAPT maps provide a more instantaneous snapshot of the global photospheric field distribution than that provided by traditional daily updated synoptic maps. Using ADAPT to drive the background solar wind, an ensemble set of eight different CME arrival times was generated, where the spread in the predictions was ∼ 13 hours and was nearly centered on the observed CME shock arrival time. |
| Starting Page | 349 |
| Ending Page | 368 |
| Page Count | 20 |
| File Format | |
| ISSN | 00380938 |
| Journal | Solar Physics |
| Volume Number | 285 |
| Issue Number | 1-2 |
| e-ISSN | 1573093X |
| Language | English |
| Publisher | Springer Netherlands |
| Publisher Date | 2012-04-17 |
| Publisher Place | Dordrecht |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Coronal mass ejections, modeling Solar wind, modeling Solar wind, observations Astrophysics and Astroparticles Atmospheric Sciences Extraterrestrial Physics, Space Sciences |
| Content Type | Text |
| Resource Type | Article |
| Subject | Astronomy and Astrophysics Space and Planetary Science |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|